CAR-T细胞治疗实体瘤的现存挑战及优化策略

郭菲菲 崔久嵬

郭菲菲, 崔久嵬. CAR-T细胞治疗实体瘤的现存挑战及优化策略[J]. 中国肿瘤临床, 2022, 49(12): 617-621. doi: 10.12354/j.issn.1000-8179.2022.20211860
引用本文: 郭菲菲, 崔久嵬. CAR-T细胞治疗实体瘤的现存挑战及优化策略[J]. 中国肿瘤临床, 2022, 49(12): 617-621. doi: 10.12354/j.issn.1000-8179.2022.20211860
Feifei Guo, Jiuwei Cui. Current challenges and optimization strategies for CAR-T cell therapy for solid tumors[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(12): 617-621. doi: 10.12354/j.issn.1000-8179.2022.20211860
Citation: Feifei Guo, Jiuwei Cui. Current challenges and optimization strategies for CAR-T cell therapy for solid tumors[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(12): 617-621. doi: 10.12354/j.issn.1000-8179.2022.20211860

CAR-T细胞治疗实体瘤的现存挑战及优化策略

doi: 10.12354/j.issn.1000-8179.2022.20211860
详细信息
    作者简介:

    郭菲菲:专业方向为肿瘤免疫治疗

    通讯作者:

    崔久嵬 cuijw@jlu.edu.cn

Current challenges and optimization strategies for CAR-T cell therapy for solid tumors

More Information
  • 摘要: 近年来,嵌合抗原受体T细胞(chimeric antigen receptor T-cell,CAR-T)疗法在血液肿瘤治疗中取得了突破性进展。然而,由于实体瘤异于血液肿瘤的特性,CAR-T在实体瘤治疗中并未取得很好的疗效。限制CAR-T疗效的关键因素主要包括实体瘤细胞本身及其特殊的肿瘤微环境(tumor microenvironment,TME)两方面,在CAR-T向肿瘤组织部位浸润、CAR-T在TME中维持抗肿瘤活性以及CAR-T对肿瘤细胞的靶向性识别杀伤等多个过程中损害CAR-T功能。为了解决这些问题,越来越多的临床前研究提出了潜在有效的解决办法,相应的临床研究也相继开展。本文将对CAR-T细胞治疗实体瘤的现存挑战及相应的优化策略进行综述,以期为CAR-T疗法的未来探索提供参考。

     

  • [1] Locke FL, Go WY, Neelapu SS. Development and use of the anti-cd19 chimeric antigen receptor t-cell therapy axicabtageneciloleucel in large b-cell lymphoma: a review[J]. Jama Oncol, 2020, 6(2):281-290. doi: 10.1001/jamaoncol.2019.3869
    [2] Chen N, Li X, Chintala NK, et al. Driving cars on the uneven road of antigen heterogeneity in solid tumors[J]. Curr Opin Immunol, 2018, 51:103-110.
    [3] Hou AJ, Chen LC, Chen YY. Navigating car-t cells through the solid-tumour microenvironment[J]. Nat Rev Drug Discov, 2021, 20(7):531-550. doi: 10.1038/s41573-021-00189-2
    [4] Castellarin M, Watanabe K, June CH, et al. Driving cars to the clinic for solid tumors[J]. Gene Ther, 2018, 25(3):165-175. doi: 10.1038/s41434-018-0007-x
    [5] Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of t cells transduced with a chimeric antigen receptor recognizing erbb2[J]. Mol Ther, 2010, 18(4):843-851. doi: 10.1038/mt.2010.24
    [6] Li G, Wong AJ. Egf receptor variant iii as a target antigen for tumor immunotherapy[J]. Expert Rev Vaccines, 2008, 7(7):977-985. doi: 10.1586/14760584.7.7.977
    [7] O’Rourke DM, Nasrallah MP, Morrissette J, et al. Abstract LB-083: Phase I study of T cells redirected to egfrviii with a chimeric antigen receptor in patients with egfrⅧ+ glioblastoma[J]. Cancer Res, 2016, 76(suppl_14): LB-083.
    [8] Park AK, Fong Y, Kim SI, et al. Effective combination immunotherapy using oncolytic viruses to deliver car targets to solid tumors[J]. Sci Transl Med, 2020, 12(559):eaaz1863.
    [9] Hernandez-Lopez RA, Yu W, Cabral KA, et al. T cell circuits that sense antigen density with an ultrasensitive threshold[J]. Science, 2021, 371(6534):1166--1171. doi: 10.1126/science.abc1855
    [10] Anurathapan U, Chan RC, Hindi HF, et al. Kinetics of tumor destruction by chimeric antigen receptor-modified T cells[J]. Mol Ther, 2014, 22(3):623-633. doi: 10.1038/mt.2013.262
    [11] Kloss CC, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells[J]. Nature Biotechnology, 2013, 31(1):71-75. doi: 10.1038/nbt.2459
    [12] Choe JH, Watchmaker PB, Simic MS, et al. Synnotch-car t cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma[J]. Sci Transl Med, 2021, 13(591):eabe7378.
    [13] Choi BD, Yu X, Castano AP, et al. Car-t cells secreting bites circumvent antigen escape without detectable toxicity[J]. Nature Biotechnology, 2019, 37(9):1049-1058. doi: 10.1038/s41587-019-0192-1
    [14] Lohmueller JJ, Ham JD, Kvorjak M, et al. Msa2 affinity-enhanced biotin-binding car t cells for universal tumor targeting[J]. Oncoimmunology, 2018, 7(1):e1368604.
    [15] Beatty GL, Moon EK. Chimeric antigen receptor t cells are vulnerable to immunosuppressive mechanisms present within the tumor microenvironment[J]. Oncoimmunology, 2014, 3(11):e970027.
    [16] Scharping NE, Delgoffe GM. Tumor microenvironment metabolism: A new checkpoint for anti-tumor immunity[J]. Vaccines (Basel), 2016, 4(4):46.
    [17] Guo Y, Feng K, Liu Y, et al. Phase I study of chimeric antigen receptor-modified T cells in patients with egfr-positive advanced biliary tract cancers[J]. Clin Cancer Res, 2018, 24(6):1277-1286. doi: 10.1158/1078-0432.CCR-17-0432
    [18] Murty S, Haile ST, Beinat C, et al. Intravital imaging reveals synergistic effect of car t-cells and radiation therapy in a preclinical immunocompetent glioblastoma model[J]. Oncoimmunology, 2020, 9(1):1757360.
    [19] Zhu L, Liu J, Zhou G, et al. Remodeling of tumor microenvironment by tumor-targeting nanozymes enhances immune activation of car T cells for combination therapy[J]. Small, 2021,17(43):e2102624.
    [20] Bocca P, Di Carlo E, Caruana I, et al. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of gd2-car T cells in a human neuroblastoma preclinical model[J]. Oncoimmunology, 2018, 7(1):e1378843.
    [21] Caruana I, Savoldo B, Hoyos V, et al. Heparanase promotes tumor infiltration and antitumor activity of car-redirected T lymphocytes[J]. Nat Med, 2015, 21(5):524-529. doi: 10.1038/nm.3833
    [22] Lo A, Wang LS, Scholler J, et al. Tumor-promoting desmoplasia is disrupted by depleting fap-expressing stromal cells[J]. Cancer Research, 2015, 75(14):2800-2810. doi: 10.1158/0008-5472.CAN-14-3041
    [23] Watanabe K, Luo Y, Da T, et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor t cells and cytokine-armed oncolytic adenoviruses[J]. JCI Insight, 2018, 3(7):e99573.
    [24] Johnson LR, Lee DY, Eacret JS, et al. The immunostimulatory RNA RN7SL1 enables car-t cells to enhance autonomous and endogenous immune function[J]. Cell, 2021, 184(19):4981. doi: 10.1016/j.cell.2021.08.004
    [25] Adusumilli PS, Zauderer MG, Rivière I,et al. A phase Ⅰ trial of regional mesothelin-targeted car t-cell therapy in patients with malignant pleural disease, in combination with the anti-pd-1 agent pembrolizumab[J]. Cancer Discov, 2021, 11(11):2748-2763. doi: 10.1158/2159-8290.CD-21-0407
    [26] Tanoue K, Rosewell Shaw A, Watanabe N, et al. Armed oncolytic adenovirus-expressing PDL-1 mini-body enhances antitumor effects of chimeric antigen receptor t cells in solid tumors[J]. Cancer research, 2017, 77(8):2040-2051. doi: 10.1158/0008-5472.CAN-16-1577
    [27] Zou F, Lu L, Liu J, et al. Engineered triple inhibitory receptor resistance improves anti-tumor car-t cell performance via CD56[J]. Nat Commun, 2019, 10(1)-4109.
    [28] Shi X, Zhang D, Li F,et al. Targeting glycosylation of pd-1 to enhance car-t cell cytotoxicity[J]. J Hematol Oncol, 2019, 12(1):127.
    [29] Pan Z, Di S, Shi B, et al. Increased antitumor activities of glypican-3-specific chimeric antigen receptor-modified t cells by coexpression of a soluble PDL1-ch3 fusion protein[J]. Cancer Immunol Immun, 2018, 67(10):1621-1634. doi: 10.1007/s00262-018-2221-1
    [30] Masoumi E, Jafarzadeh L, Mirzaei HR, et al. Genetic and pharmacological targeting of a2a receptor improves function of anti-mesothelin car t cells[J]. J Exp Clin Cancer Res, 2020, 39(1):49.
    [31] Qu Y, Dunn ZS, Chen X, et al. Adenosine deaminase 1 overexpression enhances the antitumor efficacy of chimeric antigen receptor-engineered t cells[J]. Hum Gene Ther, 2022,33(5-6):223-236.
    [32] Huang Q, Xi J, Wang L, et al. Mir-153 suppresses ido1 expression and enhances car t cell immunotherapy[J]. J Hematol Oncol, 2018, 11(1):90.
    [33] Fultang L, Booth S, Yogev O, et al. Metabolic engineering against the arginine microenvironment enhances car-t cell proliferation and therapeutic activity[J]. Blood, 2020, 136(10):1155-1160. doi: 10.1182/blood.2019004500
    [34] Cui J, Zhang Q, Song Q, et al. Targeting hypoxia downstream signaling protein, caix, for car t-cell therapy against glioblastoma[J]. Neuro Oncology, 2019, 21(11):1436-1446. doi: 10.1093/neuonc/noz117
    [35] Ligtenberg MA, Mougiakakos D, Mukhopadhyay M, et al. Coexpressed catalase protects chimeric antigen receptor-redirected t cells as well as bystander cells from oxidative stress-induced loss of antitumor activity[J]. J Immunol, 2016, 196(2):759-766. doi: 10.4049/jimmunol.1401710
  • 加载中
计量
  • 文章访问数:  452
  • HTML全文浏览量:  95
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 录用日期:  2022-01-30
  • 网络出版日期:  2022-05-26

目录

    /

    返回文章
    返回