CAR-T细胞治疗在急性髓系白血病中的研究和应用进展

肖植文 喻敏 李菲

肖植文, 喻敏, 李菲. CAR-T细胞治疗在急性髓系白血病中的研究和应用进展[J]. 中国肿瘤临床, 2022, 49(20): 1052-1055. doi: 10.12354/j.issn.1000-8179.2022.20220308
引用本文: 肖植文, 喻敏, 李菲. CAR-T细胞治疗在急性髓系白血病中的研究和应用进展[J]. 中国肿瘤临床, 2022, 49(20): 1052-1055. doi: 10.12354/j.issn.1000-8179.2022.20220308
Zhiwen Xiao, Min Yu, Fei Li. Research and application progress of CAR T-cell therapy in acute myeloid leukemia[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(20): 1052-1055. doi: 10.12354/j.issn.1000-8179.2022.20220308
Citation: Zhiwen Xiao, Min Yu, Fei Li. Research and application progress of CAR T-cell therapy in acute myeloid leukemia[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(20): 1052-1055. doi: 10.12354/j.issn.1000-8179.2022.20220308

CAR-T细胞治疗在急性髓系白血病中的研究和应用进展

doi: 10.12354/j.issn.1000-8179.2022.20220308
基金项目: 本文课题受江西省自然科学基金重点项目(编号:20192ACB20030)、江西省科技创新基地计划(江西省血液病临床医学研究中心)项目(编号:20212BCG74001)和中央引导地方科技发展专项-国家血液系统疾病临床医学研究中心江西分中心项目(编号:20111ZDG02006)资助
详细信息
    作者简介:

    肖植文:专业方向为血液肿瘤的诊治与研究

    通讯作者:

    李菲 yx021021@sina.com

Research and application progress of CAR T-cell therapy in acute myeloid leukemia

Funds: This work was supported by Natural Science Foundation of Jiangxi Province (No. 20192ACB20030), Jiangxi Provincial Science and Technology Innovation Base Program (Jiangxi Provincial Clinical Research Center for Hematology) (No. 20212BCG74001), and the Central Government Guided Local Science and Technology Development Projects-Jiangxi Branch of National Clinical Research Center for Hematological Diseases (No. 20111ZDG02006)
More Information
  • 摘要: 急性髓系白血病(acute myeloid leukemia,AML)是一种高度异质性的恶性血液病,近些年随着化疗、靶向药物和造血干细胞移植的发展,AML患者的疗效已有较大的提高,但总体而言,绝大部分患者仍无法治愈。目前,成人AML患者5年生存率仍未超过30%。嵌合抗原受体T细胞(chimeric antigen receptor T-cell,CAR-T)疗法在复发难治性B淋巴细胞肿瘤领域取得了显著疗效,越来越多的研究开始研发CAR-T疗法在其他类型肿瘤及疾病中的应用。本文主要就近些年CAR-T疗法在AML中的临床应用和研究进展做出综述。

     

  • [1] 中华医学会血液学分会白血病淋巴瘤学组.中国复发难治性性性急性髓系白血病诊疗指南(2021年版)[J].中华血液学杂志,2021,42(8):624-627. doi: 10.3760/cma.j.issn.0253-2727.2021.08.002
    [2] Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy[J]. Nat Rev Clinical Oncol, 2020, 17(3):147-167. doi: 10.1038/s41571-019-0297-y
    [3] Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies[J]. Blood Cancer J, 2021, 11(4):1-11.
    [4] Philipson BI, O’Connor RS, May MJ, et al. 4-1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling[J]. Sci Sign, 2020, 13(625):eaay8248. doi: 10.1126/scisignal.aay8248
    [5] Wang Q, Wang Y, Lv H, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia[J]. Molecular therapy, 2015, 23(1):184-191.
    [6] Tambaro FP, Singh H, Jones E, et al. Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia[J]. Leukemia, 2021, 35(11):3282-3286. doi: 10.1038/s41375-021-01232-2
    [7] Liu Y, Wang S, Schubert ML, et al. CD33‐directed immunotherapy with third‐generation chimeric antigen receptor T cells and gemtuzumab ozogamicin in intact and CD33‐edited acute myeloid leukemia and hematopoietic stem and progenitor cells[J]. Int J Cancer, 2021, 42(2):234-236.
    [8] Jones LM, Tarlock K, Cooper T. Targeted therapy in pediatric AML: an evolving landscape[J]. Paediatr Drugs, 2021, 23(5):485-497. doi: 10.1007/s40272-021-00467-x
    [9] Sun Y, Chen JL, Liu YR, et al. Donor-derived CD123-targeted CAR T cell serves as a RIC regimen for haploidentical transplantation in a patient with FUS-ERG+ AML[J]. Front Oncol, 2019, 9:1358. doi: 10.3389/fonc.2019.01358
    [10] Riberdy JM, Zhou S, Zheng F, et al. The art and science of selecting a CD123-specific chimeric antigen receptor for clinical testing[J]. Mol Ther Methods Clin Dev, 2020, 18:571-581. doi: 10.1016/j.omtm.2020.06.024
    [11] Ataca Atilla P, McKenna MK, Tashiro H, et al. Modulating TNFα activity allows transgenic IL15-Expressing CLL-1 CAR-T cells to safely eliminate acute myeloid leukemia[J]. J Immunother Cancer, 2020, 8(2):e001229. doi: 10.1136/jitc-2020-001229
    [12] Fiorenza S, Turtle CJ. CAR-T cell therapy for acute myeloid leukemia: preclinical rationale, current clinical progress, and barriers to success[J]. Bio Drugs, 2021, 35(3):281-302.
    [13] Qu CJ, Li Z, Kang LQ, et al. Successful treatment of two relapsed/refractory t(8;21)acute myeloid leukemia patients by CD19-directed chimeric antigen receptor T cells[J]. Bone Marrow Transplant, 2019, 54(7):1138-1140. doi: 10.1038/s41409-018-0423-y
    [14] Danylesko I, Jacoby E, Yerushalmi R, et al. Remission of acute myeloid leukemia with t(8;21)following CD19 CAR T-cells[J]. Leukemia, 2020, 34(7):1939-1942. doi: 10.1038/s41375-020-0719-y
    [15] Marofi F, Rahman HS, Al-Obaidi ZMJ, et al. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients[J]. Stem Cell Res Ther, 2021, 12(1):465. doi: 10.1186/s13287-021-02420-8
    [16] Sallman DA, Brayer JB, Poire X, et al. Results from the completed dose-escalation of the hematological arm of the phase I think study evaluating multiple infusions of NKG2D-based CAR T-cells As standalone therapy in relapse/refractory acute myeloid leukemia and myelodysplastic syndrome patients[J]. Blood, 2019, 134(Supple_1):3826.
    [17] Marvin-Peek J, Savani BN, Olalekan OO, et al. Challenges and advances in chimeric antigen receptor therapy for acute myeloid leukemia[J]. Cancers (Basel), 2022, 14(3):497. doi: 10.3390/cancers14030497
    [18] Cui QY, Qian CS, Xu N, et al. CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation[J]. J Hematol Oncol, 2021, 14(1):82. doi: 10.1186/s13045-021-01092-4
    [19] Wang Y, Xu YX, Li SS, et al. Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells[J]. J Hematol Oncol, 2018, 11(1):60. doi: 10.1186/s13045-018-0603-7
    [20] Shrestha E, Liang R, Sirochinsky C, et al. Preclinical development of anti-FLT3 CAR-T therapy for the treatment of acute myeloid leukemia[J]. Blood, 2020, 136:4-5.
    [21] Ghamari A, Pakzad P, Majd A, et al. Design and production an effective bispecific tandem chimeric antigen receptor on T cells against CD123 and folate receptor ß towards B-acute myeloid leukaemia blasts[J]. Cell J, 2021, 23(6):650-657.
    [22] Michelozzi IM, Kirtsios E, Giustacchini A. Driving CAR T stem cell targeting in acute myeloid leukemia: the roads to success[J]. Cancers, 2021, 13(11):2816. doi: 10.3390/cancers13112816
    [23] Hazelton W, Ghorashian S, Pule M. Nanobody based tri-specific chimeric antigen receptor to treat acute myeloid leukaemia[J]. Blood, 2020, 136:10-11.
    [24] Freyer CW, Porter DL. Cytokine release syndrome and neurotoxicity following CAR T-cell therapy for hematologic malignancies[J]. J Allergy Clin Immunol, 2020, 146(5):940-948. doi: 10.1016/j.jaci.2020.07.025
    [25] Wallet F, Sesques P, Devic P, et al. CAR-T cell: Toxicities issues: mechanisms and clinical management[J]. Bull Cancer, 2021, 108(10S):S117-S127.
  • 加载中
计量
  • 文章访问数:  662
  • HTML全文浏览量:  129
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-27
  • 录用日期:  2022-05-27
  • 修回日期:  2022-05-24
  • 网络出版日期:  2022-06-15

目录

    /

    返回文章
    返回