过继性T细胞治疗在非小细胞肺癌中的研究进展

颜次慧 任秀宝

颜次慧, 任秀宝. 过继性T细胞治疗在非小细胞肺癌中的研究进展[J]. 中国肿瘤临床, 2022, 49(17): 908-912. doi: 10.12354/j.issn.1000-8179.2022.20220632
引用本文: 颜次慧, 任秀宝. 过继性T细胞治疗在非小细胞肺癌中的研究进展[J]. 中国肿瘤临床, 2022, 49(17): 908-912. doi: 10.12354/j.issn.1000-8179.2022.20220632
Cihui Yan, Xiubao Ren. Research progress of adoptive T-cell therapy for non-small cell lung cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(17): 908-912. doi: 10.12354/j.issn.1000-8179.2022.20220632
Citation: Cihui Yan, Xiubao Ren. Research progress of adoptive T-cell therapy for non-small cell lung cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(17): 908-912. doi: 10.12354/j.issn.1000-8179.2022.20220632

过继性T细胞治疗在非小细胞肺癌中的研究进展

doi: 10.12354/j.issn.1000-8179.2022.20220632
基金项目: 本文课题受国家自然科学基金项目(编号:81972772,U20A20375)资助
详细信息
    作者简介:

    颜次慧:专业方向为肿瘤免疫治疗基础与临床转化研究

    通讯作者:

    任秀宝 renxiubao@tjmuch.com

Research progress of adoptive T-cell therapy for non-small cell lung cancer

Funds: This work was supported by the National natural Science Foundation of China (No. 81972772, No. U20A20375)
More Information
  • 摘要: T细胞是获得性抗肿瘤免疫的重要细胞亚群,但肿瘤组织中的T细胞数量少,且处于免疫抑制甚至耗竭状态,这是导致肿瘤免疫逃逸和免疫检查点抑制剂等抗肿瘤免疫治疗效果不佳的重要原因。过继性T细胞治疗主要包括肿瘤浸润淋巴细胞(tumor-infiltrating lymphocytes,TILs)、嵌合抗原受体T细胞(chimeric antigen receptor T-cell,CAR-T)、T细胞受体工程化T细胞(T-cell receptor engineering T cell,TCR-T)治疗,其通过体外筛选扩增富集肿瘤特异性T细胞或通过基因改造赋予T细胞新的抗原特异性(CAR-T、TCR-T),有效克服了肿瘤浸润T细胞不足的缺陷。虽然过继性T细胞治疗在非小细胞肺癌(non-small cell lung cancer,NSCLC)中的研究起步较晚,但已显示治疗的安全可行性和初步抗肿瘤效果,值得进一步深入研究。本文将对TILs、CAR-T、TCR-T的原理、培养方法、生物学特征以及在NSCLC治疗中的研究进展进行综述,以期为优化临床研究设计和开展新型NSCLC免疫治疗提供新思路。

     

  • 图  1  过继性T细胞制备流程

    图  2  CAR构建发展过程

  • [1] Blank CU, Haining WN, Held W, et al. Defining ‘T cell exhaustion’[J]. Nat Rev Immunol, 2019, 19(11):665-674. doi: 10.1038/s41577-019-0221-9
    [2] Choi BD, Maus MV, June CH, et al. Immunotherapy for glioblastoma: adoptive T-cell strategies[J]. Clin Cancer Res, 2019, 25(7):2042-2048.
    [3] Mandriani B, Pelle' E, Pezzicoli G, et al. Adoptive T-cell immunotherapy in digestive tract malignancies: current challenges and future perspectives[J]. Cancer Treat Rev, 2021, 100:102288. doi: 10.1016/j.ctrv.2021.102288
    [4] Lowery FJ, Krishna S, Yossef R, et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers[J]. Science, 2022, 375(6583):877-884.
    [5] Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer[J]. Science, 2015, 348(6230):62-68. doi: 10.1126/science.aaa4967
    [6] Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains[J]. Nat Rev Clin Oncol, 2021, 18(11):715-727. doi: 10.1038/s41571-021-00530-z
    [7] Zhang ZC, Miao LL, Ren ZJ, et al. Gene-edited interleukin CAR-T cells therapy in the treatment of malignancies: present and future[J]. Front Immunol, 2021, 12:718686.
    [8] Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing[J]. Mol Cancer, 2022, 21(1):78. doi: 10.1186/s12943-022-01559-z
    [9] D'Angelo SP, Melchiori L, Merchant MS, et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T cells in synovial sarcoma[J]. Cancer Discov, 2018, 8(8):944-957. doi: 10.1158/2159-8290.CD-17-1417
    [10] Park S, Ock CY, Kim H, et al. Artificial intelligence-powered spatial analysis of tumor-infiltrating lymphocytes as complementary biomarker for immune checkpoint inhibition in non-small-cell lung cancer[J]. J Clin Oncol, 2022:JCO2102010. doi: 10.1200/JCO.21.02010
    [11] Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update[J]. Cancer Immunol Immunother, 2005, 54(3):187-207. doi: 10.1007/s00262-004-0560-6
    [12] Creelan BC, Wang C, Teer JK, et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial[J]. Nat Med, 2021, 27(8):1410-1418. doi: 10.1038/s41591-021-01462-y
    [13] Feng KC, Guo YL, Dai HR, et al. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer[J]. Sci China Life Sci, 2016, 59(5):468-479. doi: 10.1007/s11427-016-5023-8
    [14] Zhang YJ, Zhang ZW, Ding YM, et al. Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients[J]. J Cancer Res Clin Oncol, 2021, 147(12):3725-3734. doi: 10.1007/s00432-021-03613-7
    [15] Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2[J]. Mol Ther, 2010, 18(4):843-851. doi: 10.1038/mt.2010.24
    [16] Kachala SS, Bograd AJ, Villena-Vargas J, et al. Mesothelin overexpression is a marker of tumor aggressiveness and is associated with reduced recurrence-free and overall survival in early-stage lung adenocarcinoma[J]. Clin Cancer Res, 2014, 20(4):1020-1028. doi: 10.1158/1078-0432.CCR-13-1862
    [17] Wei XR, Lai YX, Li J, et al. PSCA and MUC1 in non-small-cell lung cancer as targets of chimeric antigen receptor T cells[J]. Oncoimmunology, 2017, 6(3):e1284722. doi: 10.1080/2162402X.2017.1284722
    [18] Gjerstorff MF, Pøhl M, Olsen KE, et al. Analysis of GAGE, NY-ESO-1 and SP17 cancer/testis antigen expression in early stage non-small cell lung carcinoma[J]. BMC Cancer, 2013, 13:466. doi: 10.1186/1471-2407-13-466
    [19] Xia Y, Tian XP, Wang JT, et al. Treatment of metastatic non-small cell lung cancer with NY-ESO-1 specific TCR engineered-T cells in a phase I clinical trial: a case report[J]. Oncol Lett, 2018, 16(6):6998-7007.
    [20] Parker KR, Migliorini D, Perkey E, et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies[J]. Cell, 2020, 183(1):126-142. doi: 10.1016/j.cell.2020.08.022
    [21] Manfredi F, Cianciotti BC, Potenza A, et al. TCR redirected T cells for cancer treatment: achievements, hurdles, and goals[J]. Front Immunol, 2020, 11:1689. doi: 10.3389/fimmu.2020.01689
  • 加载中
图(2)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  53
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 录用日期:  2022-05-26
  • 网络出版日期:  2022-06-08

目录

    /

    返回文章
    返回