中国乳腺癌免疫治疗转化研究进展

李昕宇 刘强

李昕宇, 刘强. 中国乳腺癌免疫治疗转化研究进展[J]. 中国肿瘤临床, 2022, 49(22): 1156-1160. doi: 10.12354/j.issn.1000-8179.2022.20220700
引用本文: 李昕宇, 刘强. 中国乳腺癌免疫治疗转化研究进展[J]. 中国肿瘤临床, 2022, 49(22): 1156-1160. doi: 10.12354/j.issn.1000-8179.2022.20220700
Xinyu Li, Qiang Liu. Progress on immunotherapy and translational research for breast cancer in China[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(22): 1156-1160. doi: 10.12354/j.issn.1000-8179.2022.20220700
Citation: Xinyu Li, Qiang Liu. Progress on immunotherapy and translational research for breast cancer in China[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(22): 1156-1160. doi: 10.12354/j.issn.1000-8179.2022.20220700

中国乳腺癌免疫治疗转化研究进展

doi: 10.12354/j.issn.1000-8179.2022.20220700
详细信息
    作者简介:

    李昕宇:专业方向为乳腺癌手术治疗、化疗、内分泌治疗、靶向治疗及免疫治疗的临床应用和研究

    通讯作者:

    刘强 victorlq@hotmail.com

Progress on immunotherapy and translational research for breast cancer in China

More Information
  • 摘要: 乳腺癌作为全球女性发病率最高的癌症,虽然辅助化疗、放疗、靶向治疗、内分泌治疗的使用已显著降低了患者的死亡风险,但仍有部分患者尤其是晚期患者无法从现有的治疗手段中获益。随着免疫治疗的不断发展,近年来中国的乳腺癌免疫治疗转化研究从基础到临床,从分子靶点、药物研发到临床试验,均取得了突破性的进展。本文将就中国乳腺癌免疫治疗转化研究中的治疗靶点、预测标志物、治疗手段等进行综述。

     

  • [1] Adams S, Gatti-Mays ME, Kalinsky K, et al. Current landscape of immunotherapy in breast cancer: a review[J]. JAMA Oncol, 2019, 5(8):1205-1214. doi: 10.1001/jamaoncol.2018.7147
    [2] Schimid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21(1):44-59. doi: 10.1016/S1470-2045(19)30689-8
    [3] Li Q, Wang YF, Jia WJ, et al. Low-dose anti-angiogenic therapy sensitizes breast cancer to PD-1 blockade[J]. Clin Cancer Res, 2020, 26(7):1712-1724. doi: 10.1158/1078-0432.CCR-19-2179
    [4] Cortés J, Kim SB, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer[J]. N Engl J Med, 2022, 386(12):1143-1154. doi: 10.1056/NEJMoa2115022
    [5] Qin G, Wang X, Ye SB, et al. NPM1 upregulates the transcription of PD-L1 and suppresses T cell activity in triple-negative breast cancer[J]. Nat Commun, 2020, 11(1):1669. doi: 10.1038/s41467-020-15364-z
    [6] Fang WL, Zhou T, Shi H, et al. Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8+ T cell exclusion[J]. J Exp Clin Cancer Res, 2021, 40(1):4. doi: 10.1186/s13046-020-01786-6
    [7] Wan WJ, Ao X, Chen Q, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer[J]. Mol Cancer, 2022, 21(1):60. doi: 10.1186/s12943-021-01447-y
    [8] Zhang RN, Yang YJ, Dong WJ, et al. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1[J]. Proc Natl Acad Sci U S A, 2022, 119(8):e2114851119. doi: 10.1073/pnas.2114851119
    [9] Pitt JM, Marabelle A, Eggermont A, et al. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy[J]. Ann Oncol, 2016, 27(8):1482-1492. doi: 10.1093/annonc/mdw168
    [10] Huang D, Chen XM, Zeng X, et al. Targeting regulator of G protein signaling 1 in tumor-specific T cells enhances their trafficking to breast cancer[J]. Nat Immunol, 2021, 22(7):865-879. doi: 10.1038/s41590-021-00939-9
    [11] Zhou WB, Yu MX, Pan H, et al. Microwave ablation induces Th1-type immune response with activation of ICOS pathway in early-stage breast cancer[J]. J Immunother Cancer, 2021, 9(4):e002343. doi: 10.1136/jitc-2021-002343
    [12] Zhang YY, Chen HY, Mo HN, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer[J]. Cancer Cell, 2021, 39(12):1578-1593.e8. doi: 10.1016/j.ccell.2021.09.010
    [13] Bai F, Zhang P, Fu Y, etal. Targeting ANXA1 abrogates Treg-mediated immune sup pression in triple-negative breast cancer[J]. J Immunother Cancer, 2020, 8(1):169-178.
    [14] Wei JL, Wu SY, Yang YS, et al. GCH1 induces immunosuppression through metabolic reprogramming and IDO1 upregulation in triple-negative breast cancer[J]. J Immunother Cancer, 2021, 9(7):e002383. doi: 10.1136/jitc-2021-002383
    [15] Ni C, Fang QQ, Chen WZ, et al. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+γδ1 Treg cells[J]. Signal Transduct Target Ther, 2020, 5(1):41. doi: 10.1038/s41392-020-0129-7
    [16] Gu Y, Liu YF, Fu L, et al. Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG[J]. Nat Med, 2019, 25(2):312-322. doi: 10.1038/s41591-018-0309-y
    [17] Lu YW, Zhao QY, Liao JY, et al. Complement signals determine opposite effects of B cells in chemotherapy-induced immunity[J]. Cell, 2020, 180(6):1081-1097. doi: 10.1016/j.cell.2020.02.015
    [18] Liu J, Lao LY, Chen JN, et al. The IRENA lncRNA converts chemotherapy-polarized tumor-suppressing macrophages to tumor-promoting phenotypes in breast cancer[J]. Nat Cancer, 2021, 2(4):457-473. doi: 10.1038/s43018-021-00196-7
    [19] Li H, Yang P, Wang J, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk[J]. J Hematol Oncol, 2022, 15(1):2-7. doi: 10.1186/s13045-021-01223-x
    [20] Liu CC, Qiang JK, Deng QD, et al. ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression[J]. Cancer Res, 2021, 81(23):5919-5934. doi: 10.1158/0008-5472.CAN-21-1337
    [21] Yu B, Luo F, Sun BW, et al. KAT6A acetylation of SMAD3 regulates myeloid-derived suppressor cell recruitment, metastasis, and immunotherapy in triple-negative breast cancer[J]. Adv Sci (Weinh), 2022, 9(3):e2105793. doi: 10.1002/advs.202105793
    [22] Zhao S, Ma D, Xiao Y, et al. Molecular subtyping of triple-negative breast cancers by immunohistochemistry: molecular basis and clinical relevance[J]. Oncologist, 2020, 25(10):e1481-e1491. doi: 10.1634/theoncologist.2019-0982
    [23] Chen L, Jiang YZ, Wu SY, et al. Famitinib with camrelizumab and nab-paclitaxel for advanced immunomodulatory triple-negative breast cancer (FUTURE-C-plus): an open-label, single-arm, phase II trial[J]. Clin Cancer Res, 2022, 28(13):2807-2817. doi: 10.1158/1078-0432.CCR-21-4313
    [24] Jiang YZ, Liu Y, Xiao Y, et al. Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: the FUTURE trial[J]. Cell Res, 2021, 31(2):178-186. doi: 10.1038/s41422-020-0375-9
    [25] Shi ZW, Shen JF, Qiu JJ, et al. CXCL10 potentiates immune checkpoint blockade therapy in homologous recombination-deficient tumors[J]. Theranostics, 2021, 11(15):7175-7187. doi: 10.7150/thno.59056
    [26] Su SC, Zhao JH, Xing Y, et al. Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages[J]. Cell, 2018, 175(2):442-457. doi: 10.1016/j.cell.2018.09.007
    [27] Huang LX, Rong Y, Tang X, et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer[J]. Mol Cancer, 2022, 21(1):45. doi: 10.1186/s12943-022-01515-x
    [28] Chen L, Qin H, Zhao RF, et al. Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines[J]. Sci Transl Med, 2021, 13(601):eabc2816. doi: 10.1126/scitranslmed.abc2816
    [29] Xia L, Zheng ZZ, Liu JY, et al. Targeting triple-negative breast cancer with combination therapy of EGFR CAR T cells and CDK7 inhibition[J]. Cancer Immunol Res, 2021, 9(6):707-722. doi: 10.1158/2326-6066.CIR-20-0405
  • 加载中
计量
  • 文章访问数:  597
  • HTML全文浏览量:  110
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 录用日期:  2022-07-14
  • 修回日期:  2022-07-02
  • 网络出版日期:  2022-07-29

目录

    /

    返回文章
    返回