EHF通过抑制Wnt/β-catenin通路活性下调胰腺癌细胞的干性

王昊天 段晶晶 陈幸运 高春涛

王昊天, 段晶晶, 陈幸运, 高春涛. EHF通过抑制Wnt/β-catenin通路活性下调胰腺癌细胞的干性[J]. 中国肿瘤临床, 2022, 49(23): 1242-1248. doi: 10.12354/j.issn.1000-8179.2022.20221258
引用本文: 王昊天, 段晶晶, 陈幸运, 高春涛. EHF通过抑制Wnt/β-catenin通路活性下调胰腺癌细胞的干性[J]. 中国肿瘤临床, 2022, 49(23): 1242-1248. doi: 10.12354/j.issn.1000-8179.2022.20221258
Haotian Wang, Jingjing Duan, Xingyun Chen, Chuntao Gao. EHF inhibits pancreatic cancer stemness by blocking the activity of Wnt/β-catenin pathway[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(23): 1242-1248. doi: 10.12354/j.issn.1000-8179.2022.20221258
Citation: Haotian Wang, Jingjing Duan, Xingyun Chen, Chuntao Gao. EHF inhibits pancreatic cancer stemness by blocking the activity of Wnt/β-catenin pathway[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(23): 1242-1248. doi: 10.12354/j.issn.1000-8179.2022.20221258

EHF通过抑制Wnt/β-catenin通路活性下调胰腺癌细胞的干性

doi: 10.12354/j.issn.1000-8179.2022.20221258
基金项目: 本文课题受天津市教委科研计划项目(编号:2021KJ201)资助
详细信息
    作者简介:

    王昊天:专业方向为胰腺癌及乳腺癌基础转化研究

    通讯作者:

    高春涛 gaochuntao@tjmuch.com

EHF inhibits pancreatic cancer stemness by blocking the activity of Wnt/β-catenin pathway

Funds: This work was supported by the Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2021KJ201)
More Information
  • 摘要:   目的   探索E26转化特异性同源因子(E26 transformation-specific homologous factor,EHF)调控胰腺癌细胞干性的机制。   方法   通过生信分析寻找介导EHF调控胰腺癌干性的信号通路。利用Western blot及RT-qPCR技术验证胰腺癌细胞中EHF表达与目标干性通路活性的相关性。利用ChIP及双荧光素酶实验验证EHF对靶基因的调控作用。阻断通路活性后,利用功能学实验分析目标通路在EHF调控胰腺癌细胞干性过程中的作用。   结果   生信分析发现Wnt/β-catenin通路参与EHF对胰腺癌干性的调控。构建EHF稳定过表达及稳定降表达的胰腺癌细胞系,通过Western blot及RT-qPCR技术证实胰腺癌细胞EHF的表达与Wnt/β-catenin通路的活性呈负相关,差异均具有统计学意义(均P<0.01)。EHF可通过结合β-catenin的启动子区直接抑制β-catenin的转录。通过流式细胞术、悬浮成球及软琼脂克隆形成实验证明,在利用XAV939阻断Wnt/β-catenin通路的活性后,由EHF敲低所引起的胰腺癌细胞干性上调可被有效抑制,差异均具有统计学差异(均P<0.01)。   结论   EHF通过抑制Wnt/β-catenin通路活性下调胰腺癌细胞的干性,靶向Wnt/β-catenin通路的小分子抑制剂有潜力成为治疗胰腺癌的药物。

     

  • 图  1  胰腺癌EHF表达与Wnt/β-catenin通路存在相关性

    A:通过KEGG通路分析发现EHF与Wnt/β-catenin通路存在相关性;B:通过GSEA富集分析进一步证实EHF与Wnt/β-catenin通路呈负相关

    图  2  EHF通过抑制β-catenin的转录影响Wnt/β-catenin通路的活性

    A:不同胰腺癌细胞系中EHF的蛋白水平存在差异;B:EHF表达上调后,β-catenin、c-myc及CD44的表达均出现下降;C:EHF敲低后,β-catenin、c-myc及CD44的表达均出现上升;D:EHF可能与β-catenin启动子区结合的位置;E:EHF可结合在β-catenin的启动子区;F:EHF可直接抑制β-catenin的转录。EBS-WT:EHF在启动子区的结合序列野生型;EBS-MUT:EHF在启动子区的结合序列突变型:ns:差异无统计学意义;**:P<0.01;***:P<0.001;****:P<0.000 1

    图  3  利用XAV939阻断Wnt/β-catenin通路的活性

    A:EHF敲低引起Wnt/β-catenin通路激活,经XAV939处理后,β-catenin、c-myc及CD44的蛋白含量均出现明显下降; B:EHF敲低引起Wnt/β-catenin通路激活,经XAV939处理后,β-catenin、c-myc及CD44的mRNA含量均出现明显的下降;**:P<0.01;***:P<0.001;****:P<0.000 1;ns:差异无统计学意义

    图  4  阻断Wnt/β-catenin通路可有效抑制由EHF敲低引起的胰腺癌细胞干性上调

    A:流式细胞术实验证实,EHF敲低后,胰腺癌细胞的干性特征增加,但经XAV939(2 μM)处理后,干性特征出现明显下降;B:悬浮细胞成球实验结果;C:软琼脂克隆实验结果;SFE:细胞成球率;CFE:克隆形成率;**:P<0.01;***:P<0.001;ns:差异无统计学意义

    表  1  RT-qPCR的引物序列

    基因名称 引物序列
    EHF F: 5' -CTCGAGCTAGACCGTGTCCACCT-3'
    R: 5' - GTAGGCCGCTATGGACTGTGCAAT-3'
    β-actin F: 5' - AGGCCAACCGCGAGAAGATGACC-3'
    R: 5' - GAAGTCCAGGGCGACGTAGCACC-3'
    β-catenin F: 5' -CGCTAAAGTTCTCTGGATCCACCT-3'
    R: 5' - GTAGGCCGCTATGGACTGTGCAAT-3'
    c-myc F: 5' -CCTTCTCTAACCTCTCCTGGATCCA-3'
    R: 5' - AGAGGTCTCTAATGCGTGAAGTGC-3'
    CD44 F: 5' -CGCTGTCATCCTCATTCACACTTGC-3'
      R: 5' - AGCTGCACACTCCACAGGAAGAAT-3'
    下载: 导出CSV
  • [1] Liu J, Jiang W, Zhao K, et al. Tumoral EHF predicts the efficacy of anti-PD1 therapy in pancreatic ductal adenocarcinoma[J]. J Exp Med, 2019, 216(3):656-673. doi: 10.1084/jem.20180749
    [2] Zhao T, Jiang W, Wang X, et al. ESE3 inhibits pancreatic cancer metastasis by upregulating E-Cadherin[J]. Cancer Res, 2017, 77(4):874-885. doi: 10.1158/0008-5472.CAN-16-2170
    [3] Albino D, Longoni N, Curti L, et al. ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features[J]. Cancer Res, 2012, 72(11):2889-2900. doi: 10.1158/0008-5472.CAN-12-0212
    [4] Albino D, Civenni G, Rossi S, et al. The ETS factor ESE3/EHF represses IL-6 preventing STAT3 activation and expansion of the prostate cancer stem-like compartment[J]. Oncotarget, 2016, 7(47):76756-76768. doi: 10.18632/oncotarget.12525
    [5] Zhou T, Liu J, Xie Y, et al. ESE3/EHF, a promising target of rosiglitazone, suppresses pancreatic cancer stemness by downregulating CXCR4[J]. Gut, 2022, 71(2):357-371. doi: 10.1136/gutjnl-2020-321952
    [6] Gupta VK, Sharma NS, Durden B, et al. Hypoxia-driven oncometabolite L-2HG maintains stemness-differentiation balance and facilitates immune evasion in pancreatic cancer[J]. Cancer Res, 2021, 81(15):4001-4013. doi: 10.1158/0008-5472.CAN-20-2562
    [7] Pan G, Liu Y, Shang L, et al. EMT-associated microRNAs and their roles in cancer stemness and drug resistance[J]. Cancer Commun (Lond), 2021, 41(3):199-217. doi: 10.1002/cac2.12138
    [8] Romano S, Tufano M, D'Arrigo P, et al. Cell stemness, epithelial-to-mesenchymal transition, and immunoevasion: intertwined aspects in cancer metastasis[J]. Semin Cancer Biol, 2020, 60:181-190. doi: 10.1016/j.semcancer.2019.08.015
    [9] Gene Ontology Consortium. Gene ontology consortium: going forward[J]. Nucleic Acids Res, 2015, 43:D1049-1056. doi: 10.1093/nar/gku1179
    [10] Eraso-Pichot A, Brasó-Vives M, Golbano A, et al. GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes[J]. Glia, 2018, 66(8):1724-1735. doi: 10.1002/glia.23330
    [11] Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer[J]. Oncogene, 2017, 36(11):1461-1473. doi: 10.1038/onc.2016.304
    [12] Clevers H, Nusse R. Wnt/β-catenin signaling and disease[J]. Cell, 2012, 149(6):1192-1205. doi: 10.1016/j.cell.2012.05.012
    [13] Jang J, Jung Y, Chae S, et al. XAV939, a Wnt/β-catenin pathway modulator, has inhibitory effects on LPS-induced inflammatory response[J]. Immunopharmacol Immunotoxicol, 2019, 41(3):394-402. doi: 10.1080/08923973.2018.1536984
    [14] He W, Wu J, Shi J, et al. IL22RA1/STAT3 signaling promotes stemness and tumorigenicity in pancreatic cancer[J]. Cancer Res, 2018, 78(12):3293-3305. doi: 10.1158/0008-5472.CAN-17-3131
    [15] Buckley AM, Lynam-Lennon N, O'Neill H, et al. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(5):298-313. doi: 10.1038/s41575-019-0247-2
    [16] Collins M, Soularue E, Marthey L, et al. Management of patients with immune checkpoint inhibitor-induced enterocolitis: a systematic review[J]. Clin Gastroenterol Hepatol, 2020, 18(6):1393-1403. doi: 10.1016/j.cgh.2020.01.033
    [17] Masiak-Segit W, Rawicz-Pruszyński K, Skórzewska M, et al. Surgical treatment of pancreatic cancer[J]. Pol Przegl Chir, 2018, 90(2):45-53. doi: 10.5604/01.3001.0011.7493
    [18] Okusaka T, Furuse J. Recent advances in chemotherapy for pancreatic cancer: evidence from Japan and recommendations in guidelines[J]. J Gastroenterol, 2020, 55(4):369-382. doi: 10.1007/s00535-020-01666-y
    [19] Crippa S, Cirocchi R, Weiss MJ, et al. A systematic review of surgical resection of liver-only synchronous metastases from pancreatic cancer in the era of multiagent chemotherapy[J]. Updates Surg, 2020, 72(1):39-45. doi: 10.1007/s13304-020-00710-z
    [20] Knutson S, Raja E, Bomgarden R, et al. Development and evaluation of a fluorescent antibody-drug conjugate for molecular imaging and targeted therapy of pancreatic cancer[J]. PloS One, 2016, 11(6):e0157762. doi: 10.1371/journal.pone.0157762
    [21] Xie C, Duffy A, Brar G, et al. Immune checkpoint blockade in combination with stereotactic body radiotherapy in patients with metastatic pancreatic ductal adenocarcinoma[J]. Clin Cancer Res, 2020, 26(10):2318-2326. doi: 10.1158/1078-0432.CCR-19-3624
    [22] Lin QJ, Yang F, Jin C, et al. Current status and progress of pancreatic cancer in China[J]. World J Gastroenterol, 2015, 21(26):7988-8003. doi: 10.3748/wjg.v21.i26.7988
    [23] Ren B, Cui M, Yang G, et al. Tumor microenvironment participates in metastasis of pancreatic cancer[J]. Mol Cancer, 2018, 17(1):108. doi: 10.1186/s12943-018-0858-1
    [24] Xie SL, Fan S, Zhang SY, et al. SOX8 regulates cancer stem-like properties and cisplatin-induced EMT in tongue squamous cell carcinoma by acting on the Wnt/β-catenin pathway[J]. Int J Cancer, 2018, 142(6):1252-1265. doi: 10.1002/ijc.31134
    [25] Quayle LA, Ottewell PD, Holen I. Chemotherapy resistance and stemness in mitotically quiescent human breast cancer cells identified by fluorescent dye retention[J]. Clin Exp Metastasis, 2018, 35(8):831-846. doi: 10.1007/s10585-018-9946-2
    [26] Yeh HW, Hsu EC, Lee SS, et al. PSPC1 mediates TGF-β1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis[J]. Nat Cell Biol, 2018, 20(4):479-491. doi: 10.1038/s41556-018-0062-y
    [27] Liu YL, Stadler ZK. The future of parallel tumor and germline genetic testing: is there a role for all patients with cancer[J]. J Natl Compr Canc Netw, 2021, 19(7):871-878. doi: 10.6004/jnccn.2021.7044
    [28] Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic - implementation issues and future challenges[J]. Nat Rev Clin Oncol, 2021, 18(5):297-312. doi: 10.1038/s41571-020-00457-x
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  46
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 录用日期:  2022-11-03
  • 修回日期:  2022-10-18
  • 网络出版日期:  2022-12-02

目录

    /

    返回文章
    返回