神经母细胞瘤基因组结构性变异特征的研究进展

韩雷 杨嘉兴 龚宝成 赵强

韩雷, 杨嘉兴, 龚宝成, 赵强. 神经母细胞瘤基因组结构性变异特征的研究进展[J]. 中国肿瘤临床, 2023, 50(9): 458-462. doi: 10.12354/j.issn.1000-8179.2023.20221573
引用本文: 韩雷, 杨嘉兴, 龚宝成, 赵强. 神经母细胞瘤基因组结构性变异特征的研究进展[J]. 中国肿瘤临床, 2023, 50(9): 458-462. doi: 10.12354/j.issn.1000-8179.2023.20221573
Lei Han, Jiaxing Yang, Baocheng Gong, Qiang Zhao. Research progress on the characterization of structural variants in neuroblastoma genome[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(9): 458-462. doi: 10.12354/j.issn.1000-8179.2023.20221573
Citation: Lei Han, Jiaxing Yang, Baocheng Gong, Qiang Zhao. Research progress on the characterization of structural variants in neuroblastoma genome[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(9): 458-462. doi: 10.12354/j.issn.1000-8179.2023.20221573

神经母细胞瘤基因组结构性变异特征的研究进展

doi: 10.12354/j.issn.1000-8179.2023.20221573
基金项目: 本文课题受国家科学技术部重大慢性非传染性疾病防控研究项目(编号:2018YFC1313000和2018YFC1313001)资助
详细信息
    作者简介:

    韩雷:专业方向为儿童肿瘤生物大数据分析

    通讯作者:

    赵强 zhaoqiang@tjmuch.com

Research progress on the characterization of structural variants in neuroblastoma genome

Funds: This work was supported by the National Key Research and Development Program of China (No. 2018YFC13130000, No. 2018YFC13130001)
More Information
  • 摘要: 神经母细胞瘤(neuroblastoma,NB)是起源于神经嵴细胞的儿童胚胎恶性肿瘤,表现为较强的生物学和临床异质性。基因组测序研究显示,NB具有较低的突变负荷和频发突变。NB表现为携带较多的基因组结构性变异,是其发生、发展的重要驱动因素。临床上已将MYCN扩增和11q缺失等基因组结构性变异纳入风险分组中,但目前对于NB基因组结构性变异的了解与NB的生物学、临床复杂性仍存在差距。高通量基因组学技术的发展推动了研究者对NB基因组特征尤其是结构性变异特征有了更加全面的认识,为探索NB发生、发展机制以及更加精细的风险分层提供了数据基础。本文就近年来NB的基因组结构性变异特征研究进展进行综述。

     

  • [1] Pugh TJ, Morozova O, Attiyeh EF, et al. The genetic landscape of high-risk neuroblastoma[J]. Nat Genet, 2013, 45(3):279-284. doi: 10.1038/ng.2529
    [2] Schramm A, Köster J, Assenov Y, et al. Mutational dynamics between primary and relapse neuroblastomas[J]. Nat Genet, 2015, 47(8):872-877. doi: 10.1038/ng.3349
    [3] Lopez G, Conkrite KL, Doepner M, et al. Somatic structural variation targets neurodevelopmental genes and identifies SHANK2 as a tumor suppressor in neuroblastoma[J]. Genome Res, 2020, 30(9):1228-1242. doi: 10.1101/gr.252106.119
    [4] Brady SW, Liu YL, Ma XT, et al. Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations[J]. Nat Commun, 2020, 11(1):5183. doi: 10.1038/s41467-020-18987-4
    [5] Qiu B, Matthay KK. Advancing therapy for neuroblastoma[J]. Nat Rev Clin Oncol, 2022, 19(8):515-533. doi: 10.1038/s41571-022-00643-z
    [6] Rickman DS, Schulte JH, Eilers M. The expanding world of N-MYC-driven tumors[J]. Cancer Discov, 2018, 8(2):150-163. doi: 10.1158/2159-8290.CD-17-0273
    [7] Otte J, Dyberg C, Pepich A, et al. MYCN function in neuroblastoma development[J]. Front Oncol, 2020, 10:624079.
    [8] Zimmerman MW, Liu Y, He SN, et al. MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification[J]. Cancer Discov, 2018, 8(3):320-335. doi: 10.1158/2159-8290.CD-17-0993
    [9] Rosswog C, Fassunke J, Ernst A, et al. Genomic ALK alterations in primary and relapsed neuroblastoma[J]. Br J Cancer, 2023, 128(8):1559-1571.
    [10] Bellini A, Pötschger U, Bernard V, et al. Frequency and prognostic impact of ALK amplifications and mutations in the European neuroblastoma study group (SIOPEN) high-risk neuroblastoma trial (HR-NBL1)[J]. J Clin Oncol, 2021, 39(30):3377-3390. doi: 10.1200/JCO.21.00086
    [11] Schulte JH, Eggert A. ALK Inhibitors in neuroblastoma: a sprint from bench to bedside[J]. Clin Cancer Res, 2021, 27(13):3507-3509.
    [12] D'Oto A, Fang J, Jin HJ, et al. KDM6B promotes activation of the oncogenic CDK4/6-pRB-E2F pathway by maintaining enhancer activity in MYCN-amplified neuroblastoma[J]. Nat Commun, 2021, 12(1):7204. doi: 10.1038/s41467-021-27502-2
    [13] Aygun N. Biological and genetic features of neuroblastoma and their clinical importance[J]. Curr Pediatr Rev, 2018, 14(2):73-90. doi: 10.2174/1573396314666180129101627
    [14] Yue ZX, Xing TY, Zhao W, et al. MYCN amplification plus 1p36 loss of heterozygosity predicts ultra high risk in bone marrow metastatic neuroblastoma[J]. Cancer Med, 2022, 11(8):1837-1849. doi: 10.1002/cam4.4583
    [15] García-López J, Wallace K, Otero JH, et al. Large 1p36 deletions affecting Arid1a locus facilitate mycn-driven oncogenesis in neuroblastoma[J]. Cell Rep, 2020, 30(2):454-464. doi: 10.1016/j.celrep.2019.12.048
    [16] Valentijn LJ, Koster J, Zwijnenburg DA, et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors[J]. Nat Genet, 2015, 47(12):1411-1414. doi: 10.1038/ng.3438
    [17] Molenaar JJ, Koster J, Zwijnenburg DA, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes[J]. Nature, 2012, 483(7391):589-593. doi: 10.1038/nature10910
    [18] Verhaak RGW, Bafna V, Mischel PS. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution[J]. Nat Rev Cancer, 2019, 19(5):283-288. doi: 10.1038/s41568-019-0128-6
    [19] Koche RP, Rodriguez-Fos E, Helmsauer K, et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma[J]. Nat Genet, 2020, 52(1):29-34.
    [20] Helmsauer K, Valieva ME, Ali S, et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma[J]. Nat Commun, 2020, 11(1):5823. doi: 10.1038/s41467-020-19452-y
    [21] Paolini L, Hussain S, Galardy PJ. Chromosome instability in neuroblastoma: a pathway to aggressive disease[J]. Front Oncol, 2022, 12:988972. doi: 10.3389/fonc.2022.988972
    [22] de Bernardi B, Di Cataldo A, Garaventa A, et al. Stage 4 s neuroblastoma: features, management and outcome of 268 cases from the Italian Neuroblastoma Registry[J]. Ital J Pediatr, 2019, 45(1):8. doi: 10.1186/s13052-018-0599-1
    [23] Janoueix-Lerosey I, Schleiermacher G, Michels E, et al. Overall genomic pattern is a predictor of outcome in neuroblastoma[J]. J Clin Oncol, 2009, 27(7):1026-1033. doi: 10.1200/JCO.2008.16.0630
    [24] Schleiermacher G, Janoueix-Lerosey I, Ribeiro A, et al. Accumulation of segmental alterations determines progression in neuroblastoma[J]. J Clin Oncol, 2010, 28(19):3122-3130. doi: 10.1200/JCO.2009.26.7955
    [25] Ackermann S, Cartolano M, Hero B, et al. A mechanistic classification of clinical phenotypes in neuroblastoma[J]. Science, 2018, 362(6419):1165-1170. doi: 10.1126/science.aat6768
    [26] Peifer M, Hertwig F, Roels F, et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma[J]. Nature, 2015, 526(7575):700-704. doi: 10.1038/nature14980
    [27] Roderwieser A, Sand F, Walter E, et al. Telomerase is a prognostic marker of poor outcome and a therapeutic target in neuroblastoma[J]. JCO Precis Oncol, 2019, 3:1-20.
    [28] Yu EY, Zahid SS, Aloe S, et al. Reciprocal impacts of telomerase activity and ADRN/MES differentiation state in neuroblastoma tumor biology[J]. Commun Biol, 2021, 4(1):1315. doi: 10.1038/s42003-021-02821-8
    [29] Hartlieb SA, Sieverling L, Nadler-Holly M, et al. Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome[J]. Nat Commun, 2021, 12(1):1269. doi: 10.1038/s41467-021-21247-8
    [30] Cheung NK, Zhang JH, Lu C, et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma[J]. JAMA, 2012, 307(10):1062-1071. doi: 10.1001/jama.2012.228
    [31] Qadeer ZA, Valle-Garcia D, Hasson D, et al. ATRX In-frame fusion neuroblastoma is sensitive to EZH2 inhibition via modulation of neuronal gene signatures[J]. Cancer Cell, 2019, 36(5):512-527. doi: 10.1016/j.ccell.2019.09.002
    [32] George SL, Parmar V, Lorenzi F, et al. Novel therapeutic strategies targeting telomere maintenance mechanisms in high-risk neuroblastoma[J]. J Exp Clin Cancer Res, 2020, 39(1):78. doi: 10.1186/s13046-020-01582-2
  • 加载中
计量
  • 文章访问数:  129
  • HTML全文浏览量:  16
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 录用日期:  2023-04-04
  • 修回日期:  2023-04-03

目录

    /

    返回文章
    返回