[1]
|
Pugh TJ, Morozova O, Attiyeh EF, et al. The genetic landscape of high-risk neuroblastoma[J]. Nat Genet, 2013, 45(3):279-284. doi: 10.1038/ng.2529
|
[2]
|
Schramm A, Köster J, Assenov Y, et al. Mutational dynamics between primary and relapse neuroblastomas[J]. Nat Genet, 2015, 47(8):872-877. doi: 10.1038/ng.3349
|
[3]
|
Lopez G, Conkrite KL, Doepner M, et al. Somatic structural variation targets neurodevelopmental genes and identifies SHANK2 as a tumor suppressor in neuroblastoma[J]. Genome Res, 2020, 30(9):1228-1242. doi: 10.1101/gr.252106.119
|
[4]
|
Brady SW, Liu YL, Ma XT, et al. Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations[J]. Nat Commun, 2020, 11(1):5183. doi: 10.1038/s41467-020-18987-4
|
[5]
|
Qiu B, Matthay KK. Advancing therapy for neuroblastoma[J]. Nat Rev Clin Oncol, 2022, 19(8):515-533. doi: 10.1038/s41571-022-00643-z
|
[6]
|
Rickman DS, Schulte JH, Eilers M. The expanding world of N-MYC-driven tumors[J]. Cancer Discov, 2018, 8(2):150-163. doi: 10.1158/2159-8290.CD-17-0273
|
[7]
|
Otte J, Dyberg C, Pepich A, et al. MYCN function in neuroblastoma development[J]. Front Oncol, 2020, 10:624079.
|
[8]
|
Zimmerman MW, Liu Y, He SN, et al. MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification[J]. Cancer Discov, 2018, 8(3):320-335. doi: 10.1158/2159-8290.CD-17-0993
|
[9]
|
Rosswog C, Fassunke J, Ernst A, et al. Genomic ALK alterations in primary and relapsed neuroblastoma[J]. Br J Cancer, 2023, 128(8):1559-1571.
|
[10]
|
Bellini A, Pötschger U, Bernard V, et al. Frequency and prognostic impact of ALK amplifications and mutations in the European neuroblastoma study group (SIOPEN) high-risk neuroblastoma trial (HR-NBL1)[J]. J Clin Oncol, 2021, 39(30):3377-3390. doi: 10.1200/JCO.21.00086
|
[11]
|
Schulte JH, Eggert A. ALK Inhibitors in neuroblastoma: a sprint from bench to bedside[J]. Clin Cancer Res, 2021, 27(13):3507-3509.
|
[12]
|
D'Oto A, Fang J, Jin HJ, et al. KDM6B promotes activation of the oncogenic CDK4/6-pRB-E2F pathway by maintaining enhancer activity in MYCN-amplified neuroblastoma[J]. Nat Commun, 2021, 12(1):7204. doi: 10.1038/s41467-021-27502-2
|
[13]
|
Aygun N. Biological and genetic features of neuroblastoma and their clinical importance[J]. Curr Pediatr Rev, 2018, 14(2):73-90. doi: 10.2174/1573396314666180129101627
|
[14]
|
Yue ZX, Xing TY, Zhao W, et al. MYCN amplification plus 1p36 loss of heterozygosity predicts ultra high risk in bone marrow metastatic neuroblastoma[J]. Cancer Med, 2022, 11(8):1837-1849. doi: 10.1002/cam4.4583
|
[15]
|
García-López J, Wallace K, Otero JH, et al. Large 1p36 deletions affecting Arid1a locus facilitate mycn-driven oncogenesis in neuroblastoma[J]. Cell Rep, 2020, 30(2):454-464. doi: 10.1016/j.celrep.2019.12.048
|
[16]
|
Valentijn LJ, Koster J, Zwijnenburg DA, et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors[J]. Nat Genet, 2015, 47(12):1411-1414. doi: 10.1038/ng.3438
|
[17]
|
Molenaar JJ, Koster J, Zwijnenburg DA, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes[J]. Nature, 2012, 483(7391):589-593. doi: 10.1038/nature10910
|
[18]
|
Verhaak RGW, Bafna V, Mischel PS. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution[J]. Nat Rev Cancer, 2019, 19(5):283-288. doi: 10.1038/s41568-019-0128-6
|
[19]
|
Koche RP, Rodriguez-Fos E, Helmsauer K, et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma[J]. Nat Genet, 2020, 52(1):29-34.
|
[20]
|
Helmsauer K, Valieva ME, Ali S, et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma[J]. Nat Commun, 2020, 11(1):5823. doi: 10.1038/s41467-020-19452-y
|
[21]
|
Paolini L, Hussain S, Galardy PJ. Chromosome instability in neuroblastoma: a pathway to aggressive disease[J]. Front Oncol, 2022, 12:988972. doi: 10.3389/fonc.2022.988972
|
[22]
|
de Bernardi B, Di Cataldo A, Garaventa A, et al. Stage 4 s neuroblastoma: features, management and outcome of 268 cases from the Italian Neuroblastoma Registry[J]. Ital J Pediatr, 2019, 45(1):8. doi: 10.1186/s13052-018-0599-1
|
[23]
|
Janoueix-Lerosey I, Schleiermacher G, Michels E, et al. Overall genomic pattern is a predictor of outcome in neuroblastoma[J]. J Clin Oncol, 2009, 27(7):1026-1033. doi: 10.1200/JCO.2008.16.0630
|
[24]
|
Schleiermacher G, Janoueix-Lerosey I, Ribeiro A, et al. Accumulation of segmental alterations determines progression in neuroblastoma[J]. J Clin Oncol, 2010, 28(19):3122-3130. doi: 10.1200/JCO.2009.26.7955
|
[25]
|
Ackermann S, Cartolano M, Hero B, et al. A mechanistic classification of clinical phenotypes in neuroblastoma[J]. Science, 2018, 362(6419):1165-1170. doi: 10.1126/science.aat6768
|
[26]
|
Peifer M, Hertwig F, Roels F, et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma[J]. Nature, 2015, 526(7575):700-704. doi: 10.1038/nature14980
|
[27]
|
Roderwieser A, Sand F, Walter E, et al. Telomerase is a prognostic marker of poor outcome and a therapeutic target in neuroblastoma[J]. JCO Precis Oncol, 2019, 3:1-20.
|
[28]
|
Yu EY, Zahid SS, Aloe S, et al. Reciprocal impacts of telomerase activity and ADRN/MES differentiation state in neuroblastoma tumor biology[J]. Commun Biol, 2021, 4(1):1315. doi: 10.1038/s42003-021-02821-8
|
[29]
|
Hartlieb SA, Sieverling L, Nadler-Holly M, et al. Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome[J]. Nat Commun, 2021, 12(1):1269. doi: 10.1038/s41467-021-21247-8
|
[30]
|
Cheung NK, Zhang JH, Lu C, et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma[J]. JAMA, 2012, 307(10):1062-1071. doi: 10.1001/jama.2012.228
|
[31]
|
Qadeer ZA, Valle-Garcia D, Hasson D, et al. ATRX In-frame fusion neuroblastoma is sensitive to EZH2 inhibition via modulation of neuronal gene signatures[J]. Cancer Cell, 2019, 36(5):512-527. doi: 10.1016/j.ccell.2019.09.002
|
[32]
|
George SL, Parmar V, Lorenzi F, et al. Novel therapeutic strategies targeting telomere maintenance mechanisms in high-risk neuroblastoma[J]. J Exp Clin Cancer Res, 2020, 39(1):78. doi: 10.1186/s13046-020-01582-2
|