EGFR/TP53/RB1三重突变的小细胞肺癌转化研究及治疗进展

金倩晨 王若雨 王刚 姜佳宁 张茹 陈雯婷 李佳默 吕金燕

金倩晨, 王若雨, 王刚, 姜佳宁, 张茹, 陈雯婷, 李佳默, 吕金燕. EGFR/TP53/RB1三重突变的小细胞肺癌转化研究及治疗进展[J]. 中国肿瘤临床, 2021, 48(16): 847-851. doi: 10.12354/j.issn.1000-8179.2021.20201686
引用本文: 金倩晨, 王若雨, 王刚, 姜佳宁, 张茹, 陈雯婷, 李佳默, 吕金燕. EGFR/TP53/RB1三重突变的小细胞肺癌转化研究及治疗进展[J]. 中国肿瘤临床, 2021, 48(16): 847-851. doi: 10.12354/j.issn.1000-8179.2021.20201686
Qianchen Jin, Ruoyu Wang, Gang Wang, Jianing Jiang, Ru Zang, Wenting Chen, Jiamo Li, Jinyan Lv. Advances in translational research and treatment of small cell lung cancer withEGFR/TP53/RB1 triple mutation[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(16): 847-851. doi: 10.12354/j.issn.1000-8179.2021.20201686
Citation: Qianchen Jin, Ruoyu Wang, Gang Wang, Jianing Jiang, Ru Zang, Wenting Chen, Jiamo Li, Jinyan Lv. Advances in translational research and treatment of small cell lung cancer withEGFR/TP53/RB1 triple mutation[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(16): 847-851. doi: 10.12354/j.issn.1000-8179.2021.20201686

EGFR/TP53/RB1三重突变的小细胞肺癌转化研究及治疗进展

doi: 10.12354/j.issn.1000-8179.2021.20201686
详细信息
    作者简介:

    金倩晨:专业方向为肺癌放射治疗及靶向综合治疗

    通讯作者:

    吕金燕 Lvjinyan312@163.com

Advances in translational research and treatment of small cell lung cancer withEGFR/TP53/RB1 triple mutation

More Information
  • 摘要: 表皮生长因子受体(epidermal growth factor receptor,EGFR)突变型非小细胞肺癌(non-small cell lung cancer,NSCLC)患者在接受EGFR酪氨酸激酶抑制剂(tyrosine kinase inhibitors, TKIs )靶向治疗后能获得临床获益,但之后会不可避免地出现获得性耐药,而发生小细胞肺癌(small cell lung cancer,SCLC)组织学转化被认为是一种罕见的耐药机制。随着二代基因检测(next- generation sequencing,NGS)技术的快速发展及广泛应用,研究者发现存在EGFR/TP53/RB1三重突变的NSCLC经靶向治疗后更容易发生SCLC组织学转化,并且转化型SCLC疗效及预后较差。本文对近年来关于EGFR突变的NSCLC发生SCLC组织学转化的研究作一综述,涉及相关的转化机制、可能有效的新型药物及治疗策略,为EGFR/TP53/RB1三重突变的转化型SCLC患者提供更多潜在的临床治疗选择。

     

  • [1] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1):7-33. doi: 10.3322/caac.21654
    [2] Jordan EJ, Kim HR, Arcila ME, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies[J]. Cancer Discov, 2017, 7(6):596-609. doi: 10.1158/2159-8290.CD-16-1337
    [3] Shaurova T, Zhang L, Goodrich DW, et al. Understanding lineage plasticity as a path to targeted therapy failure in EGFR-mutant non-small cell lung cancer[J]. Front Genet, 2020, 11:281. doi: 10.3389/fgene.2020.00281
    [4] Sequist LV, Waltman BA, Dias-santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors[J]. Sci Transl Med, 2011, 3(75):75ra26.
    [5] Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers[J]. Clin Cancer Res, 2013, 19(8):2240-2247. doi: 10.1158/1078-0432.CCR-12-2246
    [6] Marcoux N, Gettinger SN, O'kane G, et al. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes[J]. J Clin Oncol, 2019, 37(4):278-285. doi: 10.1200/JCO.18.01585
    [7] Molina-Vila MA, Bertran-alamillo J, Gascó A, et al. Nondisruptive p53 mutations are associated with shorter survival in patients with advanced non-small cell lung cancer[J]. Clin Cancer Res, 2014, 20(17):4647-4659. doi: 10.1158/1078-0432.CCR-13-2391
    [8] Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use[J]. Cold Spring Harb Perspect Biol, 2010, 2(1):a001008.
    [9] Poeta ML, Manola J, Goldwasser MA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck[J]. N Engl J Med, 2007, 357(25):2552-2561. doi: 10.1056/NEJMoa073770
    [10] Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field[J]. Nat Rev Cancer, 2009, 9(10):701-713. doi: 10.1038/nrc2693
    [11] Muller PA, Vousden KH. p53 mutations in cancer[J]. Nat Cell Biol, 2013, 15(1):2-8. doi: 10.1038/ncb2641
    [12] Wilkie M, Lau A, Vlatkovic N, et al. Tumour metabolism in squamous cell carcinoma of the head and neck: an in-vitro study of the consequences of TP53 mutation and therapeutic implications[J]. Lancet, 2015, 385 (Suppl 1):S101.
    [13] Knudsen ES, Pruitt SC, Hershberger PA, et al. Cell cycle and beyond: exploiting new RB1 controlled mechanisms for cancer therapy[J]. Trends Cancer, 2019, 5(5):308-324. doi: 10.1016/j.trecan.2019.03.005
    [14] Kareta MS, Gorges LL, Hafeez S, et al. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis[J]. Cell Stem Cell, 2015, 16(1):39-50. doi: 10.1016/j.stem.2014.10.019
    [15] Yu HA, Suzawa K, Jordan E, et al. Concurrent Alterations in EGFR-mutant lung cancers associated with resistance to EGFR kinase inhibitors and characterization of MTOR as a mediator of resistance[J]. Clin Cancer Res, 2018, 24(13):3108-3118. doi: 10.1158/1078-0432.CCR-17-2961
    [16] Offin M, Chan JM, Tenet M, et al. Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes[J]. J Thorac Oncol, 2019, 14(10):1784-1793. doi: 10.1016/j.jtho.2019.06.002
    [17] Niederst MJ, Sequist LV, Poirier JT, et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer[J]. Nat Commun, 2015, 6:6377. doi: 10.1038/ncomms7377
    [18] Ogino A, Choi J, Lin M, et al. Genomic and pathological heterogeneity in clinically diagnosed small cell lung cancer in never/light smokers identifies therapeutically targetable alterations[J]. Mol Oncol, 2021, 15(1):27-42. doi: 10.1002/1878-0261.12673
    [19] Xie T, Li Y, Ying J, et al. Whole exome sequencing (WES) analysis of transformed small cell lung cancer (SCLC) from lung adenocarcinoma (LUAD)[J]. Transl Lung Cancer Res, 2020, 9(6):2428-2439. doi: 10.21037/tlcr-20-1278
    [20] Lee JK, Lee J, Kim S, et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas[J]. J Clin Oncol, 2017, 35(26):3065-3074. doi: 10.1200/JCO.2016.71.9096
    [21] Horn L, Mansfield AS, Szczęsna A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer[J]. N Engl J Med, 2018, 379(23):2220-2229. doi: 10.1056/NEJMoa1809064
    [22] Goldman JW, Garassino MC, Chen Y, et al. Patient-reported outcomes with first-line durvalumab plus platinum-etoposide versus platinum-etoposide in extensive-stage small-cell lung cancer (CASPIAN): a randomized, controlled, open-label, phase III study[J]. Lung Cancer, 2020, 149:46-52. doi: 10.1016/j.lungcan.2020.09.003
    [23] Shoemaker AR, Mitten MJ, Adickes J, et al. Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models[J]. Clin Cancer Res, 2008, 14(11):3268-3277. doi: 10.1158/1078-0432.CCR-07-4622
    [24] Park JW, Lee JK, Sheu KM, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage[J]. Science, 2018, 362(6410):91-95. doi: 10.1126/science.aat5749
    [25] Witkiewicz AK, Chung S, Brough R, et al. Targeting the vulnerability of rb tumor suppressor loss in triple-negative breast cancer[J]. Cell Rep, 2018, 22(5):1185-1199. doi: 10.1016/j.celrep.2018.01.022
    [26] Shah KN, Bhatt R, Rotow J, et al. Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer[J]. Nat Med, 2019, 25(1):111-118. doi: 10.1038/s41591-018-0264-7
    [27] Oser MG, Fonseca R, Chakraborty AA, et al. Cells lacking the RB1 tumor suppressor gene are hyperdependent on aurora B kinase for survival[J]. Cancer Discov, 2019, 9(2):230-247. doi: 10.1158/2159-8290.CD-18-0389
    [28] Gong X, Du J, Parsons SH, et al. Aurora A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene[J]. Cancer Discov, 2019, 9(2):248-263. doi: 10.1158/2159-8290.CD-18-0469
    [29] Ku SY, Rosario S, Wang Y, et al. Rb1 and Tp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance[J]. Science, 2017, 355(6320):78-83. doi: 10.1126/science.aah4199
    [30] Ishak CA, Marshall AE, Passos DT, et al. An RB-EZH2 complex mediates silencing of repetitive DNA sequences[J]. Mol Cell, 2016, 64(6):1074-1087. doi: 10.1016/j.molcel.2016.10.021
    [31] Matsumura Y, Umemura S, Ishii G, et al. Expression profiling of receptor tyrosine kinases in high-grade neuroendocrine carcinoma of the lung: a comparative analysis with adenocarcinoma and squamous cell carcinoma[J]. J Cancer Res Clin Oncol, 2015, 141(12):2159-2170. doi: 10.1007/s00432-015-1989-z
    [32] Byers LA, Wang J, Nilsson MB, et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1[J]. Cancer Discov, 2012, 2(9):798-811. doi: 10.1158/2159-8290.CD-12-0112
    [33] Peifer M, Fernández-cuesta L, Sos ML, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer[J]. Nat Genet, 2012, 44(10):1104-1110. doi: 10.1038/ng.2396
    [34] Capozzi M, Cvona, Cded, et al. Antiangiogenic therapy in pancreatic neuroendocrine tumors[J]. Anticancer Res, 2016, 36(10):5025-5030. doi: 10.21873/anticanres.11071
    [35] Wagener-ryczek S, Heydt C, Süptitz J, et al. Mutational spectrum of acquired resistance to reversible versus irreversible EGFR tyrosine kinase inhibitors[J]. BMC Cancer, 2020, 20(1):408. doi: 10.1186/s12885-020-06920-3
  • 加载中
计量
  • 文章访问数:  977
  • HTML全文浏览量:  29
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回