驱动基因阴性晚期非小细胞肺癌脑转移免疫微环境及免疫治疗的研究进展

吴寅飞 周娟 叶伶云 苏春霞

吴寅飞, 周娟, 叶伶云, 苏春霞. 驱动基因阴性晚期非小细胞肺癌脑转移免疫微环境及免疫治疗的研究进展[J]. 中国肿瘤临床, 2021, 48(24): 1253-1258. doi: 10.12354/j.issn.1000-8179.2021.20201752
引用本文: 吴寅飞, 周娟, 叶伶云, 苏春霞. 驱动基因阴性晚期非小细胞肺癌脑转移免疫微环境及免疫治疗的研究进展[J]. 中国肿瘤临床, 2021, 48(24): 1253-1258. doi: 10.12354/j.issn.1000-8179.2021.20201752
Yinfei Wu, Juan Zhou, Lingyun Ye, Chunxia Su. Progress in immune microenvironment and immunotherapy of driver gene negative advanced non-small cell lung cancer patients with brain metastases[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(24): 1253-1258. doi: 10.12354/j.issn.1000-8179.2021.20201752
Citation: Yinfei Wu, Juan Zhou, Lingyun Ye, Chunxia Su. Progress in immune microenvironment and immunotherapy of driver gene negative advanced non-small cell lung cancer patients with brain metastases[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(24): 1253-1258. doi: 10.12354/j.issn.1000-8179.2021.20201752

驱动基因阴性晚期非小细胞肺癌脑转移免疫微环境及免疫治疗的研究进展

doi: 10.12354/j.issn.1000-8179.2021.20201752
基金项目: 本文课题受上海市科学技术委员会科研计划项目 (编号:19411971100)资助
详细信息
    作者简介:

    吴寅飞:专业方向为非小细胞肺癌脑转移的相关性研究

    通讯作者:

    苏春霞 susu_mail@126.com

Progress in immune microenvironment and immunotherapy of driver gene negative advanced non-small cell lung cancer patients with brain metastases

Funds: This work was supported by the Science and Technology Commission of Shanghai Municipality (No. 19411971100)
More Information
  • 摘要: 远端转移是晚期非小细胞肺癌(non-small cell lung cancer,NSCLC)患者难以避免的并发症,脑转移(brain metastases,BM)是此类患者最常见的转移部位之一。脑转移患者可能出现头痛、视物模糊、偏瘫、肢体麻木等症状,生存质量受到严重影响。脑转移患者通常预后较差,自然中位生存期仅有3个月左右。传统上,针对驱动基因阴性NSCLC脑转移的治疗策略有局部干预的外科手术、放射治疗及系统性干预的化疗等,而有明确基因突变如EGFR、ALK、ROS1等的患者可采用新一代靶向药物治疗,但两类患者颅内治疗疗效均欠佳。免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)的出现为晚期肺癌的治疗带来新希望,其在黑色素瘤及肺癌脑转移患者中观察到了一定疗效。脑转移瘤的血管与正常脑血管存在显著差异。不同于肺部原发病灶,脑转移瘤具有独特的肿瘤微环境、免疫细胞特征及血管结构,无论是免疫单药治疗还是免疫联合治疗对肺癌脑转移患者均有效。由于难以获得脑组织样本,免疫治疗的生物标志物的研究受到限制。除了肿瘤细胞程序性死亡-配体1(programmed cell death ligand-1,PD-L1)外,肿瘤突变负荷(tumor mutation burden,TMB)可能是预测免疫治疗疗效的潜在生物标志物。本文梳理脑部肿瘤的微环境特征,回顾ICIs治疗相关研究进展,拟为驱动基因阴性NSCLC脑转移患者的治疗提供参考。

     

  • [1] Lamba N, Kearney RB, Catalano PJ, et al. Population-based estimates of survival among elderly patients with brain metastases[J]. Neuro Oncol, 2021, 23(4):661-676. doi: 10.1093/neuonc/noaa233
    [2] Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer[J]. N Engl J Med, 2015, 373(17):1627-1639. doi: 10.1056/NEJMoa1507643
    [3] Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer[J]. N Engl J Med, 2015, 373(2):123-135. doi: 10.1056/NEJMoa1504627
    [4] Hempel C, Johnsen KB, Kostrikov S, et al. Brain tumor vessels-a barrier for drug delivery[J]. Cancer Metastasis Rev, 2020, 39(3):959-968.
    [5] Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1):26-41. doi: 10.1038/s41568-019-0205-x
    [6] Masuda C, Sugimoto M, Wakita D, et al. Bevacizumab suppresses the growth of established non-small-cell lung cancer brain metastases in a hematogenous brain metastasis model[J]. Clin Exp Metastasis, 2020, 37(1):199-207. doi: 10.1007/s10585-019-10008-z
    [7] Ebright RY, Zachariah MA, Micalizzi DS, et al. HIF1A signaling selectively supports proliferation of breast cancer in the brain[J]. Nat Commun, 2020, 11(1):6311. doi: 10.1038/s41467-020-20144-w
    [8] Berghoff AS, Fuchs E, Ricken G, et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases[J]. Oncoimmunology, 2016, 5(1):e1057388. doi: 10.1080/2162402X.2015.1057388
    [9] Camy F, Karpathiou G, Dumollard JM, et al. Brain metastasis PD-L1 and CD8 expression is dependent on primary tumor type and its PD-L1 and CD8 status[J]. J Immunother Cancer, 2020, 8(2):e000597.
    [10] Takamori S, Toyokawa G, Okamoto I, et al. Clinical significance of PD-L1 expression in brain metastases from non-small cell lung cancer[J]. Anticancer Res, 2018, 38(1):553-557.
    [11] Campbell BB, Light N, Fabrizio D, et al. Comprehensive analysis of hypermutation in human cancer[J]. Cell, 2017, 171(5):1042-1056. doi: 10.1016/j.cell.2017.09.048
    [12] Mansfield AS, Ren H, Sutor S, et al. Contraction of T cell richness in lung cancer brain metastases[J]. Sci Rep, 2018, 8(1):2171. doi: 10.1038/s41598-018-20622-8
    [13] Klemm F, Maas RR, Bowman RL, et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells[J]. Cell, 2020, 181(7):1643-1660. doi: 10.1016/j.cell.2020.05.007
    [14] Mansfield AS, Aubry MC, Moser JC, et al. Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer[J]. Ann Oncol, 2016, 27(10):1953-1958. doi: 10.1093/annonc/mdw289
    [15] Taggart D, Andreou T, Scott KJ, et al. Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8(+) T cell trafficking[J]. Proc Natl Acad Sci U S A, 2018, 115(7):E1540-E1549. doi: 10.1073/pnas.1714089115
    [16] Yost KE, Satpathy AT, Wells DK, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade[J]. Nat Med, 2019, 25(8):1251-1259.
    [17] García-Mulero S, Alonso MH, Pardo J, et al. Lung metastases share common immune features regardless of primary tumor origin[J]. J Immunother Cancer, 2020, 8(1):e000491. doi: 10.1136/jitc-2019-000491
    [18] Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors[J]. Glia, 2002, 40(2):252-259. doi: 10.1002/glia.10147
    [19] Sevenich L, Bowman RL, Mason SD, et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S[J]. Nat Cell Biol, 2014, 16(9):876-888. doi: 10.1038/ncb3011
    [20] Pukrop T, Dehghani F, Chuang HN, et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way[J]. Glia, 2010, 58(12):1477-1489. doi: 10.1002/glia.21022
    [21] Quail DF, Joyce JA. The microenvironmental landscape of brain tumors[J]. Cancer Cell, 2017, 31(3):326-341. doi: 10.1016/j.ccell.2017.02.009
    [22] Zhang L, Zhang S, Yao J, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth[J]. Nature, 2015, 527(7576):100-104. doi: 10.1038/nature15376
    [23] Chen Q, Boire A, Jin X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer[J]. Nature, 2016, 533(7604):493-498. doi: 10.1038/nature18268
    [24] Zeng Q, Michael IP, Zhang P, et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis[J]. Nature, 2019, 573(7775):526-531. doi: 10.1038/s41586-019-1576-6
    [25] You H, Baluszek S, Kaminska B. Immune microenvironment of brain metastases-are microglia and other brain macrophages little helpers[J]? Front Immunol, 2019, 10:1941.
    [26] Cheng H, Perez-Soler R. Leptomeningeal metastases in non-small-cell lung cancer[J]. Lancet Oncol, 2018, 19(1):e43-e55. doi: 10.1016/S1470-2045(17)30689-7
    [27] Kathryn C. Arbour LM, Niamh Long et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non–small-cell lung cancer[J]. J Clin Oncol, 2018, 36(28):2872-2878. doi: 10.1200/JCO.2018.79.0006
    [28] Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016, 375(19):1823-1833. doi: 10.1056/NEJMoa1606774
    [29] Goldberg SB, Gettinger SN, Mahajan A, et al. Pembrolizumab for patients with melanoma or non-small cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial[J]. Lancet Oncol, 2016, 17(7):976-983. doi: 10.1016/S1470-2045(16)30053-5
    [30] Goldberg SB, Schalper KA, Gettinger SN, et al. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial[J]. Lancet Oncol, 2020, 21(5):655-663. doi: 10.1016/S1470-2045(20)30111-X
    [31] Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial[J]. Lancet, 2017, 389(10066):255-265. doi: 10.1016/S0140-6736(16)32517-X
    [32] Hendriks LEL, Henon C, Auclin E, et al. Outcome of patients with non-small cell lung cancer and brain metastases treated with checkpoint inhibitors[J]. J Thorac Oncol, 2019, 14(7):1244-1254. doi: 10.1016/j.jtho.2019.02.009
    [33] Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. N Engl J Med, 2018, 378(22):2093-2104. doi: 10.1056/NEJMoa1801946
    [34] Tawbi HA, Forsyth PA, Algazi A, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain[J]. N Engl J Med, 2018, 379(8):722-730. doi: 10.1056/NEJMoa1805453
    [35] Leonetti A, Wever B, Mazzaschi G, et al. Molecular basis and rationale for combining immune checkpoint inhibitors with chemotherapy in non-small cell lung cancer[J]. Drug Resist Updat, 2019, 46:100644. doi: 10.1016/j.drup.2019.100644
    [36] Gandhi L, Rodriguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(22):2078-2092. doi: 10.1056/NEJMoa1801005
    [37] Gadgeel S, Rodriguez-Abreu D, Speranza G, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small cell lung cancer[J]. J Clin Oncol, 2020, 38(14):1505-1517. doi: 10.1200/JCO.19.03136
    [38] Chen DS, Hurwitz H. Combinations of bevacizumab with cancer immunotherapy[J]. Cancer J, 2018, 24(4):193-204. doi: 10.1097/PPO.0000000000000327
    [39] Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC[J]. N Engl J Med, 2018, 378(24):2288-2301. doi: 10.1056/NEJMoa1716948
    [40] Ahmed KA, Kim S, Arrington J, et al. Outcomes targeting the PD-1/PD-L1 axis in conjunction with stereotactic radiation for patients with non-small cell lung cancer brain metastases[J]. J Neurooncol, 2017, 133(2):331-338. doi: 10.1007/s11060-017-2437-5
    [41] De Ruysscher D, Wanders R, Hendriks LE, et al. Progression-free survival and overall survival beyond 5 years of nsclc patients with synchronous oligometastases treated in a prospective phase Ⅱ trial (NCT 01282450)[J]. J Thorac Oncol, 2018, 13(12):1958-1961. doi: 10.1016/j.jtho.2018.07.098
    [42] Chen K, Yu X, Zhang F, et al. Applicability of the lung-molGPA index in non-small cell lung cancer patients with different gene alterations and brain metastases[J]. Lung Cancer, 2018, 125:8-13. doi: 10.1016/j.lungcan.2018.08.023
  • 加载中
计量
  • 文章访问数:  247
  • HTML全文浏览量:  161
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13

目录

    /

    返回文章
    返回