基因表达谱技术在多发性骨髓瘤分子分型中的应用

李瑾 卢绪章

李瑾, 卢绪章. 基因表达谱技术在多发性骨髓瘤分子分型中的应用[J]. 中国肿瘤临床, 2021, 48(23): 1230-1234. doi: 10.12354/j.issn.1000-8179.2021.20210995
引用本文: 李瑾, 卢绪章. 基因表达谱技术在多发性骨髓瘤分子分型中的应用[J]. 中国肿瘤临床, 2021, 48(23): 1230-1234. doi: 10.12354/j.issn.1000-8179.2021.20210995
Jin Li, Xuzhang Lu. Application of gene expression profiling in molecular classification of multiplemyeloma[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(23): 1230-1234. doi: 10.12354/j.issn.1000-8179.2021.20210995
Citation: Jin Li, Xuzhang Lu. Application of gene expression profiling in molecular classification of multiplemyeloma[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(23): 1230-1234. doi: 10.12354/j.issn.1000-8179.2021.20210995

基因表达谱技术在多发性骨髓瘤分子分型中的应用

doi: 10.12354/j.issn.1000-8179.2021.20210995
详细信息
    作者简介:

    李瑾:专业方向为多发性骨髓瘤的分子分型

    通讯作者:

    卢绪章 luxuzhang2008@163.com

Application of gene expression profiling in molecular classification of multiplemyeloma

Funds: This work was supported by Changzhou 11th Batch of Science and Technology Plan (Social Development Science and Technology Support) Project(No. CE20205027)
More Information
  • 摘要: 多发性骨髓瘤(multiple myeloma,MM)是一种具有高度异质性的恶性浆细胞疾病。在过去的几年里,随着新药的出现患者的生存已得到极大的改善,但在分子分型及预后评估方面仍面临挑战。以基因表达谱(gene expression profiling,GEP)技术为基础的转录组学研究在很大程度上有助于破译MM的复杂性,为MM的分子分型提供新的视角。基因表达谱芯片可以检测编码和非编码基因的表达、突变和新的转录组修饰,提供更多不同骨髓瘤亚群治疗和预后的新信息。目前,已在多项临床试验中发现基因表达谱可以作为独立的预后因素评估不同队列患者的预后。尽管目前临床上尚未将基因表达谱整合到骨髓瘤的诊断和治疗中,但多个研究中心已开展针对骨髓瘤的表达谱数据研究。通过对公共数据库表达谱数据进行聚类分析,建立临床预后模型,在疾病的动态演变中识别高风险和低风险患者,预测治疗敏感性,找寻新的治疗靶点,使得从转录组水平上制定个体化治疗成为可能。本文就基因表达谱技术在骨髓瘤分子分型中的应用展开综述。

     

  • 表  1  多发性骨髓瘤TC五组分型

    分组原发易位基因断裂点cyclin D染色体倍性初诊发生率(%)
    TC111q13CCND1D1非超二倍体15
    6p21CCND3D3非超二倍体3
    TC2D2超二倍体37
    TC3D2超二倍体=非超二倍体22
    TC44p16FGFR3/MMSETD2非超二倍体>超二倍体16
    TC516q23c-mafD2非超二倍体5
     20q11mafBD2非超二倍体2
    下载: 导出CSV

    表  2  多发性骨髓瘤的TC8组分型

    分组原发易位基因断裂点cyclin D未治患者发生率(%)复发患者发生率(%)
    6p216p21CCND3D33 3
    11q1311q13CCND1D11617
    D1D13410
    D1+D2D1+D2617
    D2D21720
    23
    4p164p16FGFR3/MMSETD21523
    maf16q23,20q11MAF,MAFBD277
    下载: 导出CSV
  • [1] Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management[J]. Am J Hematol, 2020, 95(5):548–567.
    [2] Walker BA, Mavrommatis K, Wardell CP, et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis[J]. Leukemia, 2019, 33(1):159–170.
    [3] Dimopoulos MA, Moreau P, Terpos E, et al. Multiple myeloma: EHA-ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. HemaSphere, 2021, 5(2):e528.
    [4] Höllein A, Twardziok SO, Walter W, et al. The combination of WGS and RNA-Seq is superior to conventional diagnostic tests in multiple myeloma: Ready for prime time[J]? Cancer Genet, 2020, 242:15–24.
    [5] Szalat R, Avet-Loiseau H, Munshi NC. Gene expression profiles in myeloma: Ready for the real world[J]? Clin Cancer Res, 2016, 22(22):5434–5442.
    [6] DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyze gene expression patterns in human cancer[J]. Nat Genet, 1996, 14:457–460.
    [7] Furukawa Y, Kikuchi J. Molecular basis of clonal evolution in multiple myeloma[J]. Int J Hematol, 2020, 111(4):496–511.
    [8] Hideshima T, Bergsagel PL, Kuehl WM, et al. Advances in biology of multiple myeloma: clinical applications[J]. Blood, 2004, 104(3):607–618.
    [9] Bergsagel PL, Kuehl WM. Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma[J]. Immunol Rev, 2003, 194:96–104.
    [10] Bergsagel PL, Kuehl WM, Zhan F, et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma[J]. Blood, 2005, 106(1):296–303.
    [11] Lovec H, Grzeschiczek A, Kowalski MB, et al. Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice[J]. EMBO J, 1994, 13(15):3487–3495.
    [12] Pawlonka J, Rak B, Ambroziak U. The regulation of cyclin D promoters-review[J]. Cancer Treat Res Commun, 2021, 27:100338.
    [13] Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma[J]. Blood, 2006, 108(6):2020–2028.
    [14] Li C, Wendlandt EB, Darbro B, et al. Genetic analysis of multiple myeloma identifies cytogenetic alterations implicated in disease complexity and progression[J]. Cancers (Basel), 2021, 13(3):1–15.
    [15] Amare GG, Meharie BG, Belayneh YM. A drug repositioning success: the repositioned therapeutic applications and mechanismsof action of thalidomide[J]. J Oncol Pharm Pract, 2021, 27(3):673–678.
    [16] Chesi M, Bergsagel PL. Many multiple myelomas: making more of the molecular mayhem[J]. Hematology Am Soc Hematol Educ Program, 2011, 2011:344–353.
    [17] Shaughnessy JD, Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1[J]. Blood, 2007, 109(6):2276–2284.
    [18] Hanamura I. Gain/amplification of chromosome arm 1q21 in multiple myeloma[J]. Cancers (Basel), 2021, 13(2):1–16.
    [19] Mohan M, Weinhold N, Schinke C, et al. Daratumumab in high-risk relapsed/refractory multiple myeloma patients: adverse effect of chromosome 1q21 gain/amplification and GEP70 status on outcome[J]. Br J Haematol, 2020, 189(1):67–71.
    [20] Mohan M, Kumar M, Samant R, et al. Bone remineralization of lytic lesions in multiple myeloma – the arkansas experience[J]. Bone, 2021, 146(1):115876.
    [21] Shaughnessy JD, Qu P, Usmani S, et al. Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with total therapy 3[J]. Blood, 2011, 118(13):3512–3524.
    [22] Ma AG, Yu LM, Zhao H, et al. PSMD4 regulates the malignancy of esophageal cancer cells by suppressing endoplasmic reticulum stress[J]. Kaohsiung J Med Sci, 2019, 35(10):591–597.
    [23] Decaux O, Lodé L, Magrangeas F, et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the intergroupe francophone du myélom[J]. J Clin Oncol, 2008, 26(29):4798–4805.
    [24] Wang H, Gong Y, Liang L, et al. Lycorine targets multiple myeloma stem cell-like cells by inhibition of Wnt/β-catenin pathway[J]. Br J Haematol, 2020, 189(6):1151–1164.
    [25] Bai H, Chen B. A 5-gene stemness score for rapid determinationof risk in multiple myeloma[J]. Onco Targets Ther, 2020, 13:4339–4348.
    [26] Kuiper R, Broyl A, De Knegt Y, et al. A gene expression signature for high-risk multiple myeloma[J]. Leukemia, 2012, 26(11):2406–2413.
    [27] Manasanch EE, Berrios D, Fountain E, et al. Gene expression profiling predicts relapse-free and overall survival in newly diagnosed myeloma patients treated with novel therapies[J]. Br J Haematol, 2021, 192(4):e115–e120.
    [28] Kumar SK, Callander NS, Hillengass J, et al. Multiple myeloma, version 1.2020 featured updates to the NCCN guidelines[J]. J NCCN J Natl Compr Cancer Netw, 2019, 17(10):1154–1165.
    [29] Bhutani M, Zhang Q, Friend R, et al. Investigation of a gene signature to predict response to immunomodulatory derivatives for patients with multiple myeloma: an exploratory, retrospective study using microarray datasets from prospective clinical trials[J]. Lancet Haematol, 2017, 4(9):e443–e451.
    [30] Samo AA, Li J, Zhou M, et al. MCL1 gene co-expression module stratifies multiple myeloma and predicts response to proteasome inhibitor-based therapy Ayaz[J]. Genes Chromosom Cancer, 2018, 57(8):420–429.
    [31] Wong KY, Chim CS. Venetoclax, bortezomib and S63845, an MCL1 inhibitor, in multiple myeloma[J]. J Pharm Pharmacol, 2020, 72:728–737.
  • 加载中
表(2)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  39
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-27
  • 网络出版日期:  2022-01-12

目录

    /

    返回文章
    返回