骨与软组织肿瘤二代测序中国专家共识(2021年版)

中国抗癌协会肉瘤专业委员会

中国抗癌协会肉瘤专业委员会. 骨与软组织肿瘤二代测序中国专家共识(2021年版)[J]. 中国肿瘤临床, 2021, 48(20): 1027-1035. doi: 10.12354/j.issn.1000-8179.2021.20211365
引用本文: 中国抗癌协会肉瘤专业委员会. 骨与软组织肿瘤二代测序中国专家共识(2021年版)[J]. 中国肿瘤临床, 2021, 48(20): 1027-1035. doi: 10.12354/j.issn.1000-8179.2021.20211365
China Anti-Cancer Association Committee of Sarcoma. Chinese expert consensus on the application of next-generation sequencing for bone and soft tissue tumors (2021 version)[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(20): 1027-1035. doi: 10.12354/j.issn.1000-8179.2021.20211365
Citation: China Anti-Cancer Association Committee of Sarcoma. Chinese expert consensus on the application of next-generation sequencing for bone and soft tissue tumors (2021 version)[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(20): 1027-1035. doi: 10.12354/j.issn.1000-8179.2021.20211365

骨与软组织肿瘤二代测序中国专家共识(2021年版)

doi: 10.12354/j.issn.1000-8179.2021.20211365
详细信息
    通讯作者:

    牛晓晖 niuxiaohui@263.net

Chinese expert consensus on the application of next-generation sequencing for bone and soft tissue tumors (2021 version)

More Information
    Corresponding author: Xiaohui Niu; E-mail: niuxiaohui@263.net
  • 摘要: 骨与软组织肿瘤临床罕见,亚型众多,且肉瘤性病变恶性程度高、预后差,给临床诊治带来巨大挑战。近年来,随着分子检测技术的发展,二代基因测序(next-generation sequencing,NGS)已广泛应用于肿瘤的分子诊断、靶向基因筛选以及表观遗传学分析等领域,使得骨与软组织肿瘤的诊治获得改善。目前,NGS技术在骨与软组织肿瘤中的应用尚存疑问。基于相关循证医学证据和专家共识,中国抗癌协会肉瘤专业委员会从NGS检测、临床应用及实验室质控角度制定了《骨与软组织肿瘤二代测序中国专家共识(2021年版)》,旨在规范NGS检测在骨与软组织肿瘤领域内的应用,更好地服务于临床诊治,使患者受益。

     

  • 表  1  常规病理学手段难以明确诊断需要进行NGS检测的骨与软组织肿瘤

    肿瘤类型涉及的分子遗传学改变
    EWSR1-SMAD3阳性纤维母细胞性肿瘤EWSR1-SMAD3*
    GAB1-ABL1阳性纤维母细胞性肿瘤GAB1-ABL1
    ALK阴性炎性肌纤维母细胞瘤TFG/YWHAE-ROS1**ETV6-NTRK3
    上皮样炎性肌纤维母细胞肉瘤RANBP2/RRBP-ALK
    少数隆突性皮纤维肉瘤COL6A3/EMILIN2-PDGFD
    MUC4阴性硬化性上皮样纤维肉瘤YAP1-KMT2A
    上皮样纤维组织细胞瘤SQSTM1/VCL-ALK
    上皮样血管瘤MBNL1/VIM/lincRNA-FOSZFP36/WWTR1/ACTB-FOSB
    TFE3重排上皮样血管内皮瘤YAP1-TFE3
    假肌源性血管内皮瘤SERPINE1/ACTB-FOSB
    网状和复合性血管内皮瘤YAP1-MAML2
    伴有神经内分泌分化复合性血管内皮瘤PTBP1-MAML2
    先天性梭形细胞横纹肌肉瘤SRF/TEAD1/VGLL2-NCOA2VGLL2-CITED2
    梭形细胞/硬化性横纹肌肉瘤MYOD1(p.L122R)突变
    骨上皮样和梭形细胞横纹肌肉瘤EWSR1/FUS-TFCP2MEIS1-NCOA2
    NTRK重排梭形细胞肿瘤LMNA/TPR/TPM3-NTRK1SPECC1L/STRN-NTRK2ETV6/EMAL4-NTRK3
    其他双表达CD34和S-100的梭形细胞肿瘤SEPT7/CUX1/CDC42SE2-BRAFPDZRN3/SLMAP/TMF1/MTAP-RAF1TFG/MYH10/NCOA4/VCL/CLIP2/KIAA121/KHDRBS1/SPECC1L/CCDC6-RETPPP1CB-ALK
    EWSR1-ETS融合肉瘤EWSR1/FUS-NFATC2EWSR1-PATZ1/POU5F1/SP3/SMARCA5
    BCOR重排肉瘤BCOR-CCNB3/MAML3ZC3H7B-BCORYWHAE-NUTM2B
    GLI1重排/扩增恶性上皮样肿瘤ACTB/MALAT1/PTCH1-GLI1GLI1扩增
    胃母细胞瘤/胃丛状纤维黏液瘤MALAT1-GLI1
    野生型胃肠道间质瘤SDHx/BRAF/NF1/KRAS突变,FGFR1-HOOK3/TACC1ETV6-NTRK3
    富于细胞性肌样肿瘤SRF-ICA1L
    肌上皮瘤样玻璃样变肿瘤OGT-FOXO3
    部分不能分类的圆细胞肉瘤EWSR1-CREB
    肾脏原始梭形细胞肉瘤MEIS1-NCOA2
    *:EWSR1基因与SMAD3基因发生融合;**:TFG/YWHAE两种不同的伴侣基因亚型分别与ROS1基因发生融合
    下载: 导出CSV

    表  2  临床检测技术的全面对比

    检测技术IHCFISHRT-PCRNGS(DNA+RNA)
    检测层面蛋白检测DNARNADNARNA
    融合基因主基因主基因主基因+伴侣基因主基因+伴侣基因主基因+伴侣基因
    优势直接展现表达结果灵敏度高、特异度高;空间定位准确,可同时分析多个细胞,并进行定量单位点精准度非常高;结果判读简单大规模,高通量;可检测点突变、小片段插入/缺失;大片段CNV等变异大规模,高通量;可检测已知、未知融合基因;可以发现新融合基因
    局限性只能检测已知的融合蛋白,不能检测未知的融合蛋白;无法区分融合伴侣;假阴性率高可检基因有限;需要多次检测;无法区分融合伴侣;距离<2兆的融合检出性能差;假阴性率较高仅限于已知融合,不能发现新融合;无法识别未知和罕见的融合基因;存在假阴性panel需要特殊设计;部分融合基因无法检测出,存在假阴性;对数据注释和报告解读要求高样本质量要求高;对数据注释和报告解读要求高
    应用场景主要用于确定细胞分化来源;少量指标用于检测遗传学改变对已知基因判断是否融合融合验证肿瘤分子全面检测肿瘤分子全面检测
    下载: 导出CSV

    表  3  靶向药物临床试验结果分析

    靶向药物临床试验主要结局
    NTRK抑制剂
     拉罗替尼(larotrectinib)实体瘤1/2期临床试验[23]肉瘤RR 87%,其中软组织肉瘤88%和骨肉瘤50%
     恩曲替尼(entrectinib)实体瘤1/2期临床试验[24]肉瘤RR 46%
    EZH2抑制剂
     他泽司他(tazemetostat)上皮样肉瘤2期试验[25]ORR 15%,其中CR率1.6%,PR率13%;中位响应时间3.9个月,mPFS 5.5个月,mOS 19个月
    CDK4/6抑制剂
     帕博西尼(palbociclib)高分化或去分化脂肪肉瘤2期试验[26]12周时PFS率57.2%,mPFS 17.9周,CR率1.8%
     阿贝西利(abemaciclib)去分化脂肪肉瘤2期试验[27]12周时PFS率76%,mPFS 6.3个月,PR率3.4%
    ALK抑制剂
     克唑替尼(crizotinib)ALK阳性炎性肌纤维母细胞瘤临床试验[28]ORR 86%,CR率36%,PR率50%
    PDGFR抑制剂
     伊马替尼(imatinib)中危或高危原发性胃肠道间质瘤临床试验[29]5年RFS 90%,OS率95%
     帕唑帕尼(pazopanib)转移性软组织肉瘤3期试验[30]帕唑帕尼组:mPFS 4.6个月,OS 12.5个月;慰剂组:mPFS 1.6个月,OS 10.7个月
     瑞普替尼(ripretinib)晚期胃肠道间质瘤3期试验[31]瑞普替尼组:mPFS 4.6个月,ORR 0%,中位TTP 1.0个月,mOS 15.1个月;安慰剂组:mPFS 1.0个月,ORR 9.4%,中位TTP 6.4个月,mOS 6.6个月
    RR:response rate,总有效率;ORR:overall responses rate,总客观缓解率;CR:complete response,完全缓解;PR:partial response,部分缓解;mPFS:median progression-free survival,中位无疾病进展时间;mOS:median overall survival,中位生存期;DOR:duration of response,响应时间;DCR:disease control rate,疾病控制率;RFS:relapse-free rate,无疾病复发率;TTP:time to progression,疾病进展时间
    下载: 导出CSV

    表  4  骨与软组织肿瘤二代测序中国专家共识要点

    序号推荐要点
    诊断
     共识1推荐常规病理学检查不能明确诊断的骨与软组织肿瘤患者进行NGS检测
     共识2推荐常规分子学检测结果为阴性的骨与软组织肿瘤患者使用(DNA+RNA)NGS技术或平台进行复检
     共识3推荐常规分子学检测与NGS检测有差异的骨与软组织肿瘤患者,进行第3种检测进行验证
    治疗
     共识4推荐考虑接受特异性靶向治疗的骨与软组织肿瘤患者,通过NGS技术或平台验证靶向药物相关的基因或潜在基因
     共识5推荐进展期骨与软组织肿瘤患者,分别采用IHC和NGS检测PD-L1、MSI、TMB等免疫治疗相关的分子标志物,根据结果辅助免疫治疗
     共识6推荐既往治疗失败且无有效替代方案的骨与软组织肿瘤患者通过NGS检测,以寻找匹配的临床试验机会
    NGS检测样本类型和流程规范
     共识7骨与软组织肿瘤的NGS样本采集应符合规范要求
     共识8骨与软组织肿瘤的NGS生物信息学分析应符合规范要求,配备完善的标准分析及质量控制流程
     共识9推荐有CAP/CLIA/CNAS认证或认可的实验室进行NGS检测
    NGS检测报告的临床解读
     共识10倡导各单位组建分子肿瘤专家委员会(molecular tumor boards,MTB),依据国内外专家共识及解读流程,正确解读NGS检测结果,制定精准诊疗方案
    下载: 导出CSV
  • [1] Burningham Z, Hashibe M, Spector L, et al. The epidemiology of sarcoma[J]. Clin Sarcoma Res, 2012, 2(1):14.
    [2] Casali PG, Abecassis N, Aro HT, et al. Soft tissue and visceral sarcomas: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2018, 29(Suppl 4):iv51-iv67.
    [3] Chou AJ, Geller DS, Gorlick R. Therapy for osteosarcoma: where do we go from here[J]? Paediatr Drugs, 2008, 10(5):315-327.
    [4] Ruggiero A. Bone and soft tissue sarcoma[J]. Cancers (Basel), 2020, 12(9):2609
    [5] Luetke A, Meyers PA, Lewis I, et al. Osteosarcoma treatment-where do we stand? A state of the art review[J]. Cancer Treat Rev, 2014, 40(4):523-532.
    [6] von Mehren M, Kane JM, Bui MM, et al. NCCN guidelines insights: soft tissue sarcoma, version 1.2021[J]. J Natl Compr Canc Netw, 2020, 18(12):1604-1612.
    [7] WHO Classification of Tumours Editorial Board. WHO classification of tumours of soft tissue and bone (Fifth edition)[M]. Lyon (France): International Agency for Research on Cancer, 2020.
    [8] 张红英,王坚.软组织和骨肿瘤分子病理学检测专家共识(2019年版)[J].中华病理学杂志,2019,48(7):505-509.
    [9] 中国临床肿瘤学会指南工作委员会.中国临床肿瘤学会(CSCO)软组织肉瘤诊疗指南2021[M].北京:人民卫生出版社,2021.
    [10] Szurian K, Kashofer K, Liegl-Atzwanger B. Role of next-generation sequencing as a diagnostic tool for the evaluation of bone and soft-tissue tumors[J]. Pathobiology, 2017, 84(6):323-338.
    [11] Machado I, Navarro S, Llombart-Bosch A. Ewing sarcoma and the new emerging Ewing-like sarcomas: (CIC and BCOR-rearranged-sarcomas). A systematic review[J]. Histol Histopathol, 2016, 31(11):1169-1181.
    [12] Wei S, Siegal GP. Small round cell tumors of soft tissue and bone[J]. Arch Pathol Lab Med, 2021. [Epub ahead of print].
    [13] Suurmeijer AJH, Dickson BC, Swanson D, et al. A novel group of spindle cell tumors defined by S100 and CD34 co-expression shows recurrent fusions involving RAF1, BRAF, and NTRK1/2 genes[J]. Genes Chromosomes Cancer, 2018, 57(12):611-621.
    [14] Antonescu CR, Agaram NP, Sung YS, et al. A distinct malignant epithelioid neoplasm with GLI1 gene rearrangements, frequent S100 protein expression, and metastatic potential: expanding the spectrum of pathologic entities with ACTB/MALAT1/PTCH1-GLI1 fusions[J]. Am J Surg Pathol, 2018, 42(4):553-560. doi: 10.1097/PAS.0000000000001010
    [15] Hamard C, Mignard X, Pecuchet N, et al. IHC, FISH, CISH, NGS in non-small cell lung cancer: What changes in the biomarker era[J]? Rev Pneumol Clin, 2018, 74(5):327-338.
    [16] Letovanec I, Finn S, Zygoura P, et al. Evaluation of NGS and RT-PCR methods for ALK Rearrangement in European NSCLC patients: results from the european thoracic oncology platform lungscape project[J]. J Thorac Oncol, 2018, 13(3):413-425. doi: 10.1016/j.jtho.2017.11.117
    [17] Sha D, Jin Z, Budczies J, et al. Tumor mutational burden as a predictive biomarker in solid tumors[J]. Cancer Discov, 2020, 10(12):1808-1825. doi: 10.1158/2159-8290.CD-20-0522
    [18] Dudley JC, Lin MT, Le DT, et al. Microsatellite instability as a biomarker for PD-1 blockade[J]. Clin Cancer Res, 2016, 22(4):813-820. doi: 10.1158/1078-0432.CCR-15-1678
    [19] Benayed R, Offin M, Mullaney K, et al. High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden[J]. Clin Cancer Res, 2019, 25(15):4712-4722. doi: 10.1158/1078-0432.CCR-19-0225
    [20] Davies KD, Aisner DL. Wake up and smell the fusions: single-modality molecular testing misses drivers[J]. Clin Cancer Res, 2019, 25(25):4586-4588.
    [21] Yun JW, Yang L, Park HY, et al. Dysregulation of cancer genes by recurrent intergenic fusions[J]. Genome Biol, 2020, 21(1):166. doi: 10.1186/s13059-020-02076-2
    [22] Li W, Guo L, Liu Y, et al. Potential unreliability of uncommon ALK, ROS1, and RET genomic breakpoints in predicting the efficacy of targeted therapy in NSCLC[J]. J Thorac Oncol, 2020, 16(3):404-418.
    [23] Laetsch TW, DuBois SG, Mascarenhas L, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study[J]. Lancet Oncol, 2018, 19(5):705-714. doi: 10.1016/S1470-2045(18)30119-0
    [24] Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2):271-282.
    [25] Gounder M, Schoffski P, Jones RL, et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study[J]. Lancet Oncol, 2020, 21(11):1423-1432.
    [26] Dickson MA, Schwartz GK, Keohan ML, et al. Progression-free survival among patients with well-differentiated or dedifferentiated liposarcoma treated with CDK4 inhibitor palbociclib: a phase 2 clinical trial[J]. JAMA Oncol, 2016, 2(7):937-940. doi: 10.1001/jamaoncol.2016.0264
    [27] Dickson M, Koff A, D'Angelo S, et al. Phase 2 study of the CDK4 inhibitor abemaciclib in dedifferentiated liposarcoma[J]. J Clin Oncol, 2019, 37(15_Suppl):11004. doi: 10.1200/JCO.2019.37.15_suppl.11004
    [28] Schoffski P, Sufliarsky J, Gelderblom H, et al. Crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumours with and without anaplastic lymphoma kinase gene alterations (European Organisation for Research and Treatment of Cancer 90101 CREATE): a multicentre, single-drug, prospective, non-randomised phase 2 trial[J]. Lancet Respir Med, 2018, 6(6):431-441. doi: 10.1016/S2213-2600(18)30116-4
    [29] Raut CP, Espat NJ, Maki RG, et al. Efficacy and tolerability of 5-year adjuvant imatinib treatment for patients with resected intermediate- or high-risk primary gastrointestinal stromal tumor: the PERSIST-5 Clinical trial[J]. JAMA Oncol, 2018, 4(12):e184060. doi: 10.1001/jamaoncol.2018.4060
    [30] van der Graaf WT, Blay JY, Chawla SP, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial[J]. Lancet, 2012, 379(9829):1879-1886. doi: 10.1016/S0140-6736(12)60651-5
    [31] Blay JY, Serrano C, Heinrich MC, et al. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21(7):923-934. doi: 10.1016/S1470-2045(20)30168-6
    [32] Marcus L, Donoghue M, Aungst S, et al. FDA approval summary: entrectinib for the treatment of NTRK gene fusion solid tumors[J]. Clin Cancer Res, 2021, 27(4):928-932. doi: 10.1158/1078-0432.CCR-20-2771
    [33] Schoffski P, Agulnik M, Stacchiotti S, et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with synovial sarcoma (NCT02601950)[J]. J Clin Oncol, 2017, 35(15_suppl):11057.
    [34] Navarrete-Dechent C, Mori S, Barker CA, et al. Imatinib treatment for locally advanced or metastatic dermatofibrosarcoma protuberans: a systematic review[J]. JAMA Dermatol, 2019, 155(3):361-369. doi: 10.1001/jamadermatol.2018.4940
    [35] Tawbi HA, Burgess M, Bolejack V, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial[J]. Lancet Oncol, 2017, 18(11): 1493-1501.
    [36] D'Angelo SP, Mahoney MR, Van Tine BA, et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials[J]. Lancet Oncol, 2018, 19(3):416-426. doi: 10.1016/S1470-2045(18)30006-8
    [37] Davis AA, Patel VG. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors[J]. J Immunother Cancer, 2019, 7(1):278. doi: 10.1186/s40425-019-0768-9
    [38] Marcus L, Lemery SJ, Keegan P, et al. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors[J]. Clin Cancer Res, 2019, 25(13):3753-3758. doi: 10.1158/1078-0432.CCR-18-4070
    [39] Subbiah V, Solit DB, Chan TA, et al. The FDA approval of pembrolizumab for adult and pediatric patients with tumor mutational burden (TMB)≥10: a decision centered on empowering patients and their physicians[J]. Ann Oncol, 2020, 31(9):1115-1118. doi: 10.1016/j.annonc.2020.07.002
    [40] Prasad V, Kaestner V, Mailankody S. Cancer drugs approved based on biomarkers and not tumor type-FDA approval of pembrolizumab for mismatch repair-deficient solid cancers[J]. JAMA Oncol, 2018, 4(2):157-158. doi: 10.1001/jamaoncol.2017.4182
    [41] Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition[J]. N Engl J Med, 2017, 377(25): 2500-2501.
    [42] Gounder MM, Ali SM, Robinson V, et al. Impact of next-generation sequencing (NGS) on diagnostic and therapeutic options in soft-tissue and bone sarcoma[J]. J Clin Oncol, 2017, 35(15_suppl):11001.
    [43] Bonneville R, Krook MA, Kautto EA, et al. Landscape of microsatellite instability across 39 cancer types[J]. JCO Precis Oncol, 2017, 2017:00073.
    [44] 《临床分子病理实验室二代基因测序检测专家共识》编写组.临床分子病理实验室二代基因测序检测专家共识[J].中华病理学杂志,2017,46(3):145-148.
    [45] Clark BZ, Yoest JM, Onisko A, et al. Effects of hydrochloric acid and formic acid decalcification on breast tumor biomarkers and HER2 fluorescence in situ hybridization[J]. Appl Immunohistochem Mol Morphol, 2019, 27(3):223-230. doi: 10.1097/PAI.0000000000000564
    [46] Singh VM, Salunga RC, Huang VJ, et al. Analysis of the effect of various decalcification agents on the quantity and quality of nucleic acid (DNA and RNA) recovered from bone biopsies[J]. Ann Diagn Pathol, 2013, 17(4):322-326. doi: 10.1016/j.anndiagpath.2013.02.001
    [47] 曾秀凤,许振朋,黄辉,等.遗传病二代测序临床检测全流程规范化共识探讨(2)—样品采集处理及检测[J].中华医学遗传学杂志,2020,37(3):339-344.
    [48] 中国临床肿瘤学会肿瘤标志物专家委员会,中国肿瘤驱动基因分析联盟.二代测序技术在肿瘤精准医学诊断中的应用专家共识[J].中华医学杂志,2018,98(26):2057-2065.
    [49] Bean LJH, Funke B, Carlston CM, et al. Diagnostic gene sequencing panels: from design to report-a technical standard of the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2020, 22(3):453-461.
    [50] Roy S, Coldren C, Karunamurthy A, et al. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the association for molecular pathology and the college of american pathologists[J]. J Mol Diagn, 2018, 20(1):4-27.
    [51] Li MM, Datto M, Duncavage EJ, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, american society of clinical oncology, and college of american pathologists[J]. J Mol Diagn, 2017, 19(1):4-23. doi: 10.1016/j.jmoldx.2016.10.002
    [52] 黄辉,沈亦平,顾卫红,等.遗传病二代测序临床检测全流程规范化共识探讨(4)—检测报告解读和遗传咨询[J].中华医学遗传学杂志,2020,37(3):352-357.
  • 加载中
表(4)
计量
  • 文章访问数:  1074
  • HTML全文浏览量:  771
  • PDF下载量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回