免疫球蛋白超家族受体在肿瘤免疫治疗中的研究进展

程治铭 李亚明

程治铭, 李亚明. 免疫球蛋白超家族受体在肿瘤免疫治疗中的研究进展[J]. 中国肿瘤临床, 2022, 49(5): 259-263. doi: 10.12354/j.issn.1000-8179.2022.20210691
引用本文: 程治铭, 李亚明. 免疫球蛋白超家族受体在肿瘤免疫治疗中的研究进展[J]. 中国肿瘤临床, 2022, 49(5): 259-263. doi: 10.12354/j.issn.1000-8179.2022.20210691
Zhiming Cheng, Yaming Li. Research progress on immunoglobulin superfamily receptors in tumor immunotherapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(5): 259-263. doi: 10.12354/j.issn.1000-8179.2022.20210691
Citation: Zhiming Cheng, Yaming Li. Research progress on immunoglobulin superfamily receptors in tumor immunotherapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(5): 259-263. doi: 10.12354/j.issn.1000-8179.2022.20210691

免疫球蛋白超家族受体在肿瘤免疫治疗中的研究进展

doi: 10.12354/j.issn.1000-8179.2022.20210691
详细信息
    作者简介:

    程治铭:专业方向为肿瘤分子影像学

    通讯作者:

    李亚明 ymli2001@163.com

Research progress on immunoglobulin superfamily receptors in tumor immunotherapy

More Information
  • 摘要: 近年来免疫检查点阻断在癌症治疗中的应用引起广泛关注。靶向PD-1、PD-L1或CTLA-4的药物在临床试验中仅有部分患者受益。确定新的免疫检查点,探索其作用机制将进一步发展肿瘤免疫疗法。TIGIT、CD226、CD112R和CD96是免疫细胞表达的一组免疫球蛋白超家族受体,与肿瘤细胞表达的Nectin/Necl家族配体(CD155、CD112)相互结合,在肿瘤免疫反应中发挥巨大作用,是新一代的免疫检查点。本文将对CD155、CD112、TIGIT、CD226、CD112R及CD96的分子结构与在肿瘤免疫反应中的作用进行阐述,探讨在癌症免疫治疗中的潜在应用。

     

  • 表  1  免疫球蛋白超家族受体与Nectin/Necl家族配体结合

    分子别名主要信号序列配体
    TIGITWUCAMITT,ITIMCD155,CD112,CD113,PVRL4
    CD112RPVRIGITIMCD112
    CD96TACTILEITIM,YXXMCD155,CD111
    CD226DNAM-1ITTCD155,CD112
    下载: 导出CSV
  • [1] Qin S, Xu L, Yi M, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4[J]. Mol Cancer, 2019, 18(1):155. doi: 10.1186/s12943-019-1091-2
    [2] Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16:223-249. doi: 10.1146/annurev-pathol-042020-042741
    [3] Gao J, Zheng Q, Xin N, et al. CD155, an onco‐immunologic molecule in human tumors[J]. Cancer Sci, 2017, 108(10):1934-1938. doi: 10.1111/cas.13324
    [4] Takai Y, Miyoshi J, Ikeda W, et al. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation[J]. Nat Rev Mol Cell Biol, 2008, 9(8):603-615. doi: 10.1038/nrm2457
    [5] Zhuo B, Li Y, Gu F, et al. Overexpression of CD155 relates to metastasis and invasion in osteosarcoma[J]. Oncol Lett, 2018, 15(5):7312-7318.
    [6] Li X, Das I, Lepletier A, et al. CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms[J]. J Clin Invest, 2018, 128(6):2613-2625. doi: 10.1172/JCI98769
    [7] Zheng Q, Wang B, Gao J, et al. CD155 knockdown promotes apoptosis via AKT/Bcl-2/Bax in colon cancer cells[J]. J Cell Mol Med, 2018, 22(1):131-140. doi: 10.1111/jcmm.13301
    [8] Hirota T, Irie K, Okamoto R, et al. Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf-MEK-ERK-AP-1 pathway[J]. Oncogene, 2005, 24(13):2229-2235. doi: 10.1038/sj.onc.1208409
    [9] Kono T, Imai Y, Yasuda S, et al. The CD155/poliovirus receptor enhances the proliferation of ras-mutated cells[J]. Int J Cancer, 2008, 122(2): 317-324.
    [10] Lepletier A, Madore J, O'Donnell JS, et al. Tumor CD155 expression is associated with resistance to anti-PD1 immunotherapy in metastatic melanoma[J]. Clin Cancer Res, 2020:2019-3925.
    [11] He W, Zhang H, Han F, et al. CD155T/TIGIT signaling regulates CD8+T-cell metabolism and promotes tumor progression in human gastric cancer[J]. Cancer Res, 2017, 77(22):6375-6388. doi: 10.1158/0008-5472.CAN-17-0381
    [12] Wu L, Mao L, Liu JF, et al. Blockade of TIGIT/CD155 signaling reverses T-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinoma[J]. Cancer Immunol Res, 2019, 7(10):1700-1713. doi: 10.1158/2326-6066.CIR-18-0725
    [13] Zhang H, Liu Q, Lei Y, et al. Direct interaction between CD155 and CD96 promotes immunosuppression in lung adenocarcinoma[J]. Cell Mol Immunol, 2020, 18(6):1575-1577.
    [14] Du X, de Almeida P, Manieri N, et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1[J]. Proc Natl Acad Sci U S A, 2018, 115(50):E11731-E11740. doi: 10.1073/pnas.1814052115
    [15] Husain B, Ramani SR, Chiang E, et al. A platform for extracellular interactome discovery identifies novel functional binding partners for the immune receptors B7-H3/CD276 and PVR/CD155[J]. Mol Cell Proteomics, 2019, 18(11):2310-2323. doi: 10.1074/mcp.TIR119.001433
    [16] Sanchez-Correa B, Valhondo I, Hassouneh F, et al. DNAM-1 and the TIGIT/PVRIG/TACTILE axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy[J]. Cancers (Basel), 2019, 11(6):877. doi: 10.3390/cancers11060877
    [17] Whelan S, Ophir E, Kotturi MF, et al. PVRIG and PVRL2 are induced in cancer and inhibit CD8+ T-cell function[J]. Cancer Immunol Res, 2019, 7(2):257-268. doi: 10.1158/2326-6066.CIR-18-0442
    [18] Jin HS, Park Y. Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy[J]. BMB Rep, 2021, 54(1):2-11. doi: 10.5483/BMBRep.2021.54.1.229
    [19] Gorvel L, Olive D. Targeting the “PVR–TIGIT axis” with immune checkpoint therapies[J]. F1000Res, 2020, 9: F1000 Faculty Rev-354.
    [20] Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors[J]. Nat Rev Immunol, 2015, 15(4):243-254. doi: 10.1038/nri3799
    [21] Zhang Z, Wu N, Lu Y, et al. DNAM-1 controls NK cell activation via an ITT-like motif[J]. J Exp Med, 2015, 212(12):2165-2182. doi: 10.1084/jem.20150792
    [22] Braun M, Aguilera AR, Sundarrajan A, et al. CD155 on tumor cells drives resistance to immunotherapy by inducing the degradation of the activating receptor CD226 in CD8+T cells[J]. Immunity, 2020, 53(4):805-823. doi: 10.1016/j.immuni.2020.09.010
    [23] Okumura G, Iguchi-Manaka A, Murata R, et al. Tumor-derived soluble CD155 inhibits DNAM-1–mediated antitumor activity of natural killer cells[J]. J Exp Med, 2020, 217(4):1.
    [24] Chung W, Eum HH, Lee HO, et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer[J]. Nat Commun, 2017, 8:15081. doi: 10.1038/ncomms15081
    [25] Harjunpää H, Guillerey C. TIGIT as an emerging immune checkpoint[J]. Clin Exp Immunol, 2020, 200(2):108-119. doi: 10.1111/cei.13407
    [26] Liu S, Zhang H, Li M, et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells[J]. Cell Death Differ, 2013, 20(3):456-464. doi: 10.1038/cdd.2012.141
    [27] Horvath L, Pircher A. ASCO 2020 non-small lung cancer (NSCLC) personal highlights[J]. Memo, 2021:1-4.
    [28] Georgiev H, Ravens I, Papadogianni G, et al. Coming of age: CD96 emerges as modulator of immune responses[J]. Front Immunol, 2018, 9:1072. doi: 10.3389/fimmu.2018.01072
    [29] Lepletier A, Lutzky VP, Mittal D, et al. The immune checkpoint CD96 defines a distinct lymphocyte phenotype and is highly expressed on tumor-infiltrating T cells[J]. Immunol Cell Biol, 2019, 97(2):152-164. doi: 10.1111/imcb.12205
    [30] Mittal D, Lepletier A, Madore J, et al. CD96 is an immune checkpoint that regulates CD8+ T-cell antitumor function[J]. Cancer Immunol Res, 2019, 7(4):559-571. doi: 10.1158/2326-6066.CIR-18-0637
    [31] Sun H, Huang Q, Huang M, et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma[J]. Hepatology,2019,70(1): 168-183.
    [32] Poh A. COM701 shows antitumor activity, +/− Nivolumab[J]. Cancer Discov, 2020, 10(6): 752.
  • 加载中
表(1)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  98
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 录用日期:  2022-01-13

目录

    /

    返回文章
    返回