ALK阳性非小细胞肺癌靶向治疗耐药机制及治疗管理的研究进展

徐子钧 胡继繁 刘子玲

徐子钧, 胡继繁, 刘子玲. ALK阳性非小细胞肺癌靶向治疗耐药机制及治疗管理的研究进展[J]. 中国肿瘤临床, 2022, 49(5): 254-258. doi: 10.12354/j.issn.1000-8179.2022.20211344
引用本文: 徐子钧, 胡继繁, 刘子玲. ALK阳性非小细胞肺癌靶向治疗耐药机制及治疗管理的研究进展[J]. 中国肿瘤临床, 2022, 49(5): 254-258. doi: 10.12354/j.issn.1000-8179.2022.20211344
Zijun Xu, Jifan Hu, Ziling Liu. Research progress on drug resistance mechanism and management of targeted therapy for ALK-positive non-small cell lung cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(5): 254-258. doi: 10.12354/j.issn.1000-8179.2022.20211344
Citation: Zijun Xu, Jifan Hu, Ziling Liu. Research progress on drug resistance mechanism and management of targeted therapy for ALK-positive non-small cell lung cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(5): 254-258. doi: 10.12354/j.issn.1000-8179.2022.20211344

ALK阳性非小细胞肺癌靶向治疗耐药机制及治疗管理的研究进展

doi: 10.12354/j.issn.1000-8179.2022.20211344
基金项目: 本文课题受国家专项项目原创探索计划项目(编号:82050003)资助
详细信息
    作者简介:

    徐子钧:专业方向为肺癌的临床和基础转化性研究

    通讯作者:

    刘子玲 drzilingliu@163.com

Research progress on drug resistance mechanism and management of targeted therapy for ALK-positive non-small cell lung cancer

Funds: This work was supported by Original Exploration Plan of National Special Project (No. 82050003)
More Information
  • 摘要: 目前,肺癌仍是世界上最常见的恶性肿瘤,位居癌症死亡原因的第1位,随着靶向治疗的发展,死亡率已显著降低。间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)作为对治疗有显著反应的非小细胞肺癌(non-small cell lung carcinoma,NSCLC)基因型,发展至今已有三代针对其靶位的间变性淋巴瘤激酶酪氨酸激酶抑制剂(anaplastic lymphoma kinase-tyrosine kinase inhibitors,ALK-TKIs),新一代的ALK-TKIs比上一代具有更为广泛的作用位点覆盖范围及更强的药物组织穿透能力。发展前路可观,但仍无法规避耐药问题,随着多种ALK抑制剂应用及联合治疗的选择增多,新的耐药后突变、复合突变以及其他多种耐药机制已逐渐被关注。与此同时,相关早期诊断及预后标志物也被发掘证实。NSCLC耐药机制及检测手段在不断更新,治疗以基于基因依赖性的个体化治疗为主,以期通过对多种耐药方式的介入,使得NSCLC逐渐转变为慢性病。本文归纳介绍了ALK抑制剂应用于NSCLC的现状及耐药机制,耐药后治疗策略及诊断和预后标志物的进展,旨在为ALK阳性NSCLC的诊治及耐药后管理策略提供参考依据。

     

  • 表  1  ALK-TKIs相关作用靶点及耐药突变

    TKI有效靶点敏感突变耐药突变是否抗L1196M\C1156Y\G1202R透过血脑屏障
    crizotinib[5-6]ALK、ROS1、
    MET
    L1198F1151Tins、C1156Y/T、L1196M、G1202R、G1269A/S、G1128A、L1152P/R、E1210K、I1171T/N/S、F1245V、F1174V/L/C、V1180L、D1203N、S1206C/Y否\否\否
    ceritinib[7-8]ALK、ROS1、IGF1R、InsRL1196M、G1269A、I1171T、S1206Y、V1180LC1156Y/T、D1203N、I1151Tins、G1202R、F1174C/V、L1198F、L1152P/R、G1123S是\否\否
    alectinib[9-10]ALK、RETL1196M、S1206Y、G1269A、C1156Y、F1174L、1151Tins、L1152RI1171T/N/S、V1180L、G1202R是\是\是
    brigatinib[11-12]ALK、ROS1、EGFR-T790ML1196M、C1156Y、G1269A、S1206Y、L1152R、F1174C、1151Tins、I1171T、D1203N、E1210K、F1245CG1202R、S1206C/F、F1174V+L1198F是\是\否
    lorlatinib[13-14]ALK、ROS1G1202R、G1269A、F1174L、S1206Y、I1171T、E1210K、L1152R 、1151Tins、V1180L、D1203NL1198F是\是\是
    ensartinib[9,15]ALK、ROS1、MET、AXL、ABL、EphA2、
    LTK、SLK
    F1174、C1156Y、L1196M、S1206R、T1151、G1202RG1269A、E1210K是\是\是
    entrectinib[16-17]ALK、ROS1、PAN-TRKG1269A、C1156Y、L1196MNA是\是\未知
    下载: 导出CSV
  • [1] Vecchiarelli S, Bennati C. Oncogene addicted non-small-cell lung cancer: current standard and hot topics[J]. Future Oncol, 2018, 14(13s):3-17. doi: 10.2217/fon-2018-0095
    [2] Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC[J]. Nat Rev Cancer, 2017, 17(11):637-658. doi: 10.1038/nrc.2017.84
    [3] Camidge DR, Kono SA, Flacco A, et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment[J]. Clin Cancer Res, 2010, 16(22):5581-5590. doi: 10.1158/1078-0432.CCR-10-0851
    [4] Karachaliou N, Santarpia M, Gonzalez Cao M, et al. Anaplastic lymphoma kinase inhibitors in phase I and phase II clinical trials for non-small cell lung cancer[J]. Expert Opin Investig Drugs, 2017, 26(6):713-722.
    [5] Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer[J]. N Engl J Med, 2015, 373(16):1582-1584.
    [6] Gainor JF, Dardaei L, Yoda S, et al. Molecular mechanisms of resistance to first-and second-generation ALK inhibitors in ALK-rearranged lung cancer[J]. Cancer Discov, 2016, 6(10):1118-1133. doi: 10.1158/2159-8290.CD-16-0596
    [7] Katayama R, Sakashita T, Yanagitani N, et al. P-glycoprotein mediates ceritinib resistance in anaplastic lymphoma Kinase-rearranged Non-small cell lung cancer[J]. EBioMedicine, 2016, 42(3):54-66.
    [8] Wang HY, Ho CC, Shih JY. Multiple acquired resistance mutations of the ALK tyrosine kinase domain after sequential use of ALK inhibitors[J]. J Thorac Oncol, 2017, 12(5):e49-e51. doi: 10.1016/j.jtho.2017.01.009
    [9] Gristina V, La Mantia M, Iacono F, et al. The emerging therapeutic landscape of ALK inhibitors in non-small cell lung cancer[J]. Pharmaceuticals (Basel), 2020, 13(12):E474. doi: 10.3390/ph13120474
    [10] Hida T, Nokihara H, Kondo M, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial[J]. Lancet, 2017, 390(10089):29-39.
    [11] Bazhenova L, Hodgson JG, Langer CJ, et al. Activity of brigatinib (BRG) in crizotinib (CRZ)-resistant ALK+ NSCLC patients (pts) according to ALK plasma mutation status[J]. J Clin Oncol, 2017, 35(15_Suppl):9065. doi: 10.1200/JCO.2017.35.15_suppl.9065
    [12] Kim DW, Tiseo M, Ahn MJ, et al. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter phase Ⅱ trial[J]. J Clin Oncol, 2017, 35(22):2490-2498. doi: 10.1200/JCO.2016.71.5904
    [13] Okada K, Araki M, Sakashita T, et al. Prediction of ALK mutations mediating ALK-TKIs resistance and drug re-purposing to overcome the resistance[J]. EBioMedicine, 2019, 41:105-119. doi: 10.1016/j.ebiom.2019.01.019
    [14] Shaw AT, Bauer TM, de Marinis F, et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer[J]. N Engl J Med, 2020, 383(21):2018-2029. doi: 10.1056/NEJMoa2027187
    [15] Yang YP, Huang J, Wang T, et al. Decoding the evolutionary response to ensartinib in patients with ALK-positive NSCLC by dynamic circulating tumor DNA sequencing[J]. J Thorac Oncol, 2021, 16(5):827-839. doi: 10.1016/j.jtho.2021.01.1615
    [16] Ardini E, Menichincheri M, Banfi P, et al. Entrectinib, a pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications[J]. Mol Cancer Ther, 2016, 15(4):628-639. doi: 10.1158/1535-7163.MCT-15-0758
    [17] Drilon A, Siena S, Ou SI, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1)[J]. Cancer Discov, 2017, 7(4):400-409. doi: 10.1158/2159-8290.CD-16-1237
    [18] Matikas A, Kentepozidis N, Georgoulias V, et al. Management of resistance to crizotinib in anaplastic lymphoma kinase-positive non-small-cell lung cancer[J]. Clin Lung Cancer, 2016, 17(6):474-482. doi: 10.1016/j.cllc.2016.05.006
    [19] Choi YL, Soda M, Yamashita Y, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors[J]. N Engl J Med, 2010, 363(18):1734-1739. doi: 10.1056/NEJMoa1007478
    [20] Dehghanian F, Kay M, Vallian S. F1174V mutation alters the ALK active conformation in response to Crizotinib in NSCLC: insight from molecular simulations[J]. J Mol Graph Model, 2017, 75:287-293. doi: 10.1016/j.jmgm.2017.06.010
    [21] Ai XH, Shen SP, Shen L, et al. An interaction map of small-molecule kinase inhibitors with anaplastic lymphoma kinase (ALK) mutants in ALK-positive non-small cell lung cancer[J]. Biochimie, 2015, 112:111-120. doi: 10.1016/j.biochi.2015.03.003
    [22] Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers[J]. Sci Transl Med, 2012, 4(120):120ra17.
    [23] Miyawaki M, Yasuda H, Tani T, et al. Overcoming EGFR bypass signal-induced acquired resistance to ALK tyrosine kinase inhibitors in ALK-translocated lung cancer[J]. Mol Cancer Res, 2017, 15(1):106-114. doi: 10.1158/1541-7786.MCR-16-0211
    [24] Wilson FH, Johannessen CM, Piccioni F, et al. A functional landscape of resistance to ALK inhibition in lung cancer[J]. Cancer Cell, 2015, 27(3):397-408. doi: 10.1016/j.ccell.2015.02.005
    [25] Isozaki H, Hotta K, Ichihara E, et al. Protocol design for the bench to bed trial in alectinib-refractory non-small-cell lung cancer patients harboring the EML4-ALK fusion gene (ALRIGHT/OLCSG1405)[J]. Clin Lung Cancer, 2016, 17(6):602-605. doi: 10.1016/j.cllc.2016.05.005
    [26] Shaw AT, Engelman JA. Crizotinib resensitization by compound mutation[J]. N Engl J Med, 2016, 374(18):1790-1791. doi: 10.1056/NEJMc1601366
    [27] Crystal AS, Shaw AT, Sequist LV, et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer[J]. Science, 2014, 346(6216):1480-1486. doi: 10.1126/science.1254721
    [28] Hrustanovic G, Olivas V, Pazarentzos E, et al. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer[J]. Nat Med, 2015, 21(9):1038-1047. doi: 10.1038/nm.3930
    [29] Watanabe H, Ichihara E, Kayatani H, et al. VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by inhibiting angiogenesis and oncogenic signaling in oncogene-driven non-small-cell lung cancers[J]. Cancer Sci, 2021, 112(5):1853-1864. doi: 10.1111/cas.14801
    [30] Ota K, Azuma K, Kawahara A, et al. Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer[J]. Clin Cancer Res, 2015, 21(17):4014-4021.
    [31] Hong SD, Chen N, Fang WF, et al. Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients[J]. Oncoimmunology, 2016, 5(3):e1094598. doi: 10.1080/2162402X.2015.1094598
    [32] Fang S, Shen YF, Chen B, et al. H3K27me3 induces multidrug resistance in small cell lung cancer by affecting HOXA1 DNA methylation via regulation of the lncRNA HOTAIR[J]. Ann Transl Med, 2018, 6(22):440. doi: 10.21037/atm.2018.10.21
    [33] Xie YJ, Zhang Y, Du LT, et al. Circulating long noncoding RNA act as potential novel biomarkers for diagnosis and prognosis of non-small cell lung cancer[J]. Mol Oncol, 2018, 12(5):648-658. doi: 10.1002/1878-0261.12188
    [34] Navarro A, Moises J, Santasusagna S, et al. Clinical significance of long non-coding RNA HOTTIP in early-stage non-small-cell lung cancer[J]. BMC Pulm Med, 2019, 19(1):55-59. doi: 10.1186/s12890-019-0816-8
    [35] Huang FX, Chen HJ, Zheng FX, et al. LncRNA BLACAT1 is involved in chemoresistance of non-small cell lung cancer cells by regulating autophagy[J]. Int J Oncol, 2019, 54(1):339-347.
  • 加载中
表(1)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  67
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 录用日期:  2021-11-19
  • 网络出版日期:  2021-12-03

目录

    /

    返回文章
    返回