肠道菌群在抗肿瘤支持治疗中的研究进展

王璐 孙伊楠 尹菡 陈心怡 李龙 袁响林

王璐, 孙伊楠, 尹菡, 陈心怡, 李龙, 袁响林. 肠道菌群在抗肿瘤支持治疗中的研究进展[J]. 中国肿瘤临床, 2022, 49(9): 443-448. doi: 10.12354/j.issn.1000-8179.2022.20211688
引用本文: 王璐, 孙伊楠, 尹菡, 陈心怡, 李龙, 袁响林. 肠道菌群在抗肿瘤支持治疗中的研究进展[J]. 中国肿瘤临床, 2022, 49(9): 443-448. doi: 10.12354/j.issn.1000-8179.2022.20211688
Lu Wang, Yinan Sun, Han Yin, Xinyi Chen, Long Li, Xianglin Yuan. Research progress on gut microbiota in antitumor supportive therapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(9): 443-448. doi: 10.12354/j.issn.1000-8179.2022.20211688
Citation: Lu Wang, Yinan Sun, Han Yin, Xinyi Chen, Long Li, Xianglin Yuan. Research progress on gut microbiota in antitumor supportive therapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(9): 443-448. doi: 10.12354/j.issn.1000-8179.2022.20211688

肠道菌群在抗肿瘤支持治疗中的研究进展

doi: 10.12354/j.issn.1000-8179.2022.20211688
基金项目: 本文课题受国家自然科学基金面上项目(编号:81773360)和同济医院院基金课题项目(编号:2019YJJA14)资助。
详细信息
    作者简介:

    王璐:专业方向为消化系统肿瘤临床及基础研究

    通讯作者:

    袁响林 yuanxianglin@hust.edu.cn

Research progress on gut microbiota in antitumor supportive therapy

Funds: This work was supported by the National Natural Science Foundation of China (No.81773360) and Tongji Hospital Foundation (No. 2019YJJA14).
More Information
  • 摘要: 肠道微生物群(gut microbiota,GM)由数以万亿计的细菌、真菌、古细菌、寄生虫和病毒等组成,GM在机体内部和个体之间的组成因人而异,与饮食习惯、种族、宿主遗传、年龄和既往药物使用情况相关,并参与代谢、炎症、免疫和肿瘤等病理生理功能。GM作为肿瘤潜在生物标志物的作用及其对癌症支持治疗的安全性、耐受性和疗效具有重要临床意义。GM和癌症的关系复杂而密切,可作为生物标记物、诊断工具、治疗靶点,是癌症精准治疗中不可或缺的因素。其不仅对结直肠癌、胃癌等消化道肿瘤具有调节、诊断预测作用,也能在其他系统的恶性肿瘤如肺癌起到生物标志物作用;提高GM的多样性,减少抗生素的使用,降低有害菌群的丰度能有效提高肿瘤的预后、抗肿瘤治疗的疗效。本文旨在对GM在恶性肿瘤发生发展、放化疗的疗效和不良反应、免疫治疗的疗效与不良反应以及饮食通过GM对肿瘤的影响进行总结,为GM的精准化调控和检测对未来肿瘤治疗、肿瘤预测提供参考方向。

     

  • 图  1  以GM为核心形成个体/食品/药物-GM-肿瘤网络

  • [1] Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans[J]. Cell, 2016, 164(3):337-340. doi: 10.1016/j.cell.2016.01.013
    [2] Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415):220-230. doi: 10.1038/nature11550
    [3] Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health[J]. Nutrients, 2014, 7(1):17-44. doi: 10.3390/nu7010017
    [4] Imhann F, Vich Vila A, Bonder MJ, et al. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota[J]. Gut Microbes, 2017, 8(4):351-358. doi: 10.1080/19490976.2017.1284732
    [5] Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier[J]. Gut, 2016, 65(2):330-339. doi: 10.1136/gutjnl-2015-309990
    [6] Thomas S, Izard J, Walsh E, et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists[J]. Cancer Res, 2017, 77(8):1783-1812. doi: 10.1158/0008-5472.CAN-16-2929
    [7] Fessler J, Matson V, Gajewski TF. Exploring the emerging role of the microbiome in cancer immunotherapy[J]. J Immunother Cancer, 2019, 7(1):108. doi: 10.1186/s40425-019-0574-4
    [8] Scott AJ, Alexander JL, Merrifield CA, et al. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis[J]. Gut, 2019, 68(9):1624-1632. doi: 10.1136/gutjnl-2019-318556
    [9] Lazar V, Ditu LM, Pircalabioru GG, et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer[J]. Front Immunol, 2018, 9:1830. doi: 10.3389/fimmu.2018.01830
    [10] Gao ZG, Guo BM, Gao RY, et al. Microbiota disbiosis is associated with colorectal cancer[J]. Front Microbiol, 2015, 6:20.
    [11] Lu YY, Chen J, Zheng JY, et al. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas[J]. Sci Rep, 2016, 6:26337. doi: 10.1038/srep26337
    [12] Zitvogel L, Galluzzi L, Viaud S, et al. Cancer and the gut microbiota: an unexpected link[J]. Sci Transl Med, 2015, 7(271):271ps1.
    [13] Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369):1443-1448. doi: 10.1126/science.aal5240
    [14] Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy[J]. Nat Rev Cancer, 2017, 17(5):271-285. doi: 10.1038/nrc.2017.13
    [15] Flanagan L, Schmid J, Ebert M, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome[J]. Eur J Clin Microbiol Infect Dis, 2014, 33(8):1381-1390. doi: 10.1007/s10096-014-2081-3
    [16] Hong J, Guo FF, Lu SY, et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer[J]. Gut, 2021, 70(11):2123-2137. doi: 10.1136/gutjnl-2020-322780
    [17] Dong X, Pan P, Zheng DW, et al. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer[J]. Sci Adv, 2020, 6(20):eaba1590. doi: 10.1126/sciadv.aba1590
    [18] Xia XX, Wu WKK, Wong SH, et al. Bacteria pathogens drive host colonic epithelial cell promoter hypermethylation of tumor suppressor genes in colorectal cancer[J]. Microbiome, 2020, 8(1):108. doi: 10.1186/s40168-020-00847-4
    [19] Cammarota G, Ianiro G. Gut microbiota and cancer patients: A broad-ranging relationship[J]. Mayo Clin Proc, 2017, 92(11):1605-1607. doi: 10.1016/j.mayocp.2017.09.009
    [20] Coker OO, Wu WKK, Wong SH, et al. Altered gut Archaea composition and interaction with bacteria are associated with colorectal cancer[J]. Gastroenterology, 2020, 159(4):1459-1470. doi: 10.1053/j.gastro.2020.06.042
    [21] Xiao Q, Lu W, Kong XX, et al. Alterations of circulating bacterial DNA in colorectal cancer and adenoma: a proof-of-concept study[J]. Cancer Lett, 2021, 499:201-208. doi: 10.1016/j.canlet.2020.11.030
    [22] Zheng YJ, Fang ZY, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer[J]. Gut Microbes, 2020, 11(4):1030-1042.
    [23] Zhang S, Kong C, Yang YZ, et al. Human oral microbiome dysbiosis as a novel non-invasive biomarker in detection of colorectal cancer[J]. Theranostics, 2020, 10(25):11595-11606. doi: 10.7150/thno.49515
    [24] Alexander JL, Wilson ID, Teare J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(6):356-365. doi: 10.1038/nrgastro.2017.20
    [25] Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science, 2013, 342(6161):971-976. doi: 10.1126/science.1240537
    [26] Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects[J]. Immunity, 2016, 45(4):931-943.
    [27] Yu T, Guo FF, Yu YN, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3):548-563. doi: 10.1016/j.cell.2017.07.008
    [28] Wardill HR, Gibson RJ, van Sebille YZ, et al. Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common TLR4-dependent mechanisms[J]. Mol Cancer Ther, 2016, 15(6):1376-1386.
    [29] Nakayama H, Kinouchi T, Kataoka K, et al. Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil[J]. Pharmacogenetics, 1997, 7(1):35-43. doi: 10.1097/00008571-199702000-00005
    [30] Fijlstra M, Ferdous M, Koning AM, et al. Substantial decreases in the number and diversity of microbiota during chemotherapy-induced gastrointestinal mucositis in a rat model[J]. Support Care Cancer, 2015, 23(6):1513-1522. doi: 10.1007/s00520-014-2487-6
    [31] Gerassy-Vainberg S, Blatt A, Danin-Poleg Y, et al. Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction[J]. Gut, 2018, 67(1):97-107. doi: 10.1136/gutjnl-2017-313789
    [32] Cui M, Xiao HW, Li Y, et al. Faecal microbiota transplantation protects against radiation-induced toxicity[J]. EMBO Mol Med, 2017, 9(4):448-461. doi: 10.15252/emmm.201606932
    [33] Luo XX, Yang C, Zhan GF, et al. Whole brain radiotherapy induces cognitive dysfunction in mice: key role of gut microbiota[J]. Psychopharmacology (Berl), 2020, 237(7):2089-2101. doi: 10.1007/s00213-020-05520-0
    [34] Yi YX, Shen LJ, Shi W, et al. Gut microbiome components predict response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a prospective, longitudinal study[J]. Clin Cancer Res, 2021, 27(5):1329-1340. doi: 10.1158/1078-0432.CCR-20-3445
    [35] Mager LF, Burkhard R, Pett N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy[J]. Science, 2020, 369(6510):1481-1489. doi: 10.1126/science.abc3421
    [36] Tomita Y, Ikeda T, Sakata S, et al. Association of probiotic Clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer[J]. Cancer Immunol Res, 2020, 8(10):1236-1242. doi: 10.1158/2326-6066.CIR-20-0051
    [37] Chalabi M, Cardona A, Nagarkar DR, et al. Efficacy of chemotherapy and atezolizumab in patients with non-small-cell lung cancer receiving antibiotics and proton pump inhibitors: pooled post hoc analyses of the OAK and POPLAR trials[J]. Ann Oncol, 2020, 31(4):525-531. doi: 10.1016/j.annonc.2020.01.006
    [38] Hopkins AM, Kichenadasse G, Karapetis CS, et al. Concomitant proton pump inhibitor use and survival in urothelial carcinoma treated with atezolizumab[J]. Clin Cancer Res, 2020, 26(20):5487-5493.
    [39] Jin YP, Dong H, Xia LL, et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC[J]. J Thorac Oncol, 2019, 14(8):1378-1389. doi: 10.1016/j.jtho.2019.04.007
    [40] Peng Z, Cheng SY, Kou Y, et al. The gut microbiome is associated with clinical response to anti-PD-1/PD-L1 immunotherapy in gastrointestinal cancer[J]. Cancer Immunol Res, 2020, 8(10):1251-1261.
    [41] Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients[J]. Science, 2021, 371(6529):602-609.
    [42] Routy B, le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J].Science, 2018, 359(6371):91-97.
    [43] Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371):97-103. doi: 10.1126/science.aan4236
    [44] Ji XL, Hou CY, Gao YG, et al. Metagenomic analysis of gut microbiota modulatory effects of jujube (Ziziphus jujuba Mill. ) polysaccharides in a colorectal cancer mouse model[J]. Food Funct, 2020, 11(1):163-173. doi: 10.1039/C9FO02171J
    [45] Zheng DW, Li RQ, An JX, et al. Prebiotics-encapsulated probiotic spores regulate gut microbiota and suppress colon cancer[J]. Adv Mater, 2020, 32(45):e2004529. doi: 10.1002/adma.202004529
  • 加载中
图(1)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  76
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 录用日期:  2022-03-14
  • 修回日期:  2022-02-13

目录

    /

    返回文章
    返回