胶质母细胞瘤恶性亚型形成与临床相关性探讨

艾依丁 吕超 解杨 杨永畅 徐星 金勋

艾依丁, 吕超, 解杨, 杨永畅, 徐星, 金勋. 胶质母细胞瘤恶性亚型形成与临床相关性探讨[J]. 中国肿瘤临床, 2022, 49(21): 1103-1107. doi: 10.12354/j.issn.1000-8179.2022.20220185
引用本文: 艾依丁, 吕超, 解杨, 杨永畅, 徐星, 金勋. 胶质母细胞瘤恶性亚型形成与临床相关性探讨[J]. 中国肿瘤临床, 2022, 49(21): 1103-1107. doi: 10.12354/j.issn.1000-8179.2022.20220185
Yiding Ai, Chao Lv, Yang Xie, Yongchang Yang, Xing Xu, Xun Jin. Formation of malignant glioblastoma subtypes and its clinical relevance[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(21): 1103-1107. doi: 10.12354/j.issn.1000-8179.2022.20220185
Citation: Yiding Ai, Chao Lv, Yang Xie, Yongchang Yang, Xing Xu, Xun Jin. Formation of malignant glioblastoma subtypes and its clinical relevance[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(21): 1103-1107. doi: 10.12354/j.issn.1000-8179.2022.20220185

胶质母细胞瘤恶性亚型形成与临床相关性探讨

doi: 10.12354/j.issn.1000-8179.2022.20220185
基金项目: 本文课题受国家自然科学基金面上项目(编号:82073276)和天津市科技支撑重点项目(编号:20YFZCSY00070)资助
详细信息
    作者简介:

    艾依丁:专业方向为脑胶质瘤临床与基础研究

    通讯作者:

    金勋 jinx2354@163.com

Formation of malignant glioblastoma subtypes and its clinical relevance

Funds: This work was supported by the National Natural Science Foundation of China (No. 82073276) and Tianjin Science and Technology Support Key Project (No. 20YFZCSY00070)
More Information
  • 摘要: 胶质母细胞瘤(glioblastoma,GBM)是一种最常见恶性的原发性脑肿瘤,即使行标准化治疗后,患者中位总生存期仅12~16个月。GBM的治疗瓶颈主要来自于肿瘤的异质性。近年来,单细胞组学和细胞生物学研究的进展揭示了GBM中转录组亚型的混合和交互转化与其治疗效果密切相关。本文从GBM亚型分布特点,重点对恶性亚型(间充质亚型)形成及转化过程中的分子机制及环境因素进行综述,并讨论表型重塑相关机制,研究其在逆转胶质母细胞临床治疗抗性中的应用前景。

     

  • 图  1  GBM恶性亚型形成机制

    A:MES亚型主要转录调控因子;B:促进MES亚型形成的微环境,包括肿瘤坏死、缺氧、炎症;C:PN亚型适应的肿瘤血管环境;D:放疗诱导的肿瘤环境变化与PMT因素

  • [1] Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021, 23(8):1231-1251.
    [2] Teo WY, Sekar K, Seshachalam P, et al. Relevance of a TCGA-derived glioblastoma subtype gene-classifier among patient populations[J]. Sci Rep, 2019, 9(1):7442.
    [3] Guan XW, Vengoechea J, Zheng SY, et al. Molecular subtypes of glioblastoma are relevant to lower grade glioma[J]. PLoS One, 2014, 9(3):e91216.
    [4] Wang QH, Hu BL, Hu X, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment[J]. Cancer Cell, 2018, 33(1):152.
    [5] van den Bent MJ, Gao Y, Kerkhof M, et al. Changes in the EGFR amplification and EGFRvⅢ expression between paired primary and recurrent glioblastomas[J]. Neuro Oncol, 2015, 17(7):935-941.
    [6] Wang JG, Cazzato E, Ladewig E, et al. Clonal evolution of glioblastoma under therapy[J]. Nat Genet, 2016, 48(7):768-776.
    [7] Hernández Martínez A, Madurga R, García-Romero N, et al. Unravelling glioblastoma heterogeneity by means of single-cell RNA sequencing[J]. Cancer Lett, 2022, 527:66-79.
    [8] Wang L, Babikir H, Müller S, et al. The phenotypes of proliferating glioblastoma cells reside on a single Axis of variation[J]. Cancer Discov, 2019, 9(12):1708-1719.
    [9] Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma[J]. Science, 2014, 344(6190):1396-1401.
    [10] Bhat KPL, Balasubramaniyan V, Vaillant B, et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma[J]. Cancer Cell, 2013, 24(3):331-346.
    [11] Fedele M, Cerchia L, Pegoraro S, et al. Proneural-mesenchymal transition: phenotypic plasticity to acquire multitherapy resistance in glioblastoma[J]. Int J Mol Sci, 2019, 20(11):E2746.
    [12] Carro MS, Lim WK, Alvarez MJ, et al. The transcriptional network for mesenchymal transformation of brain tumours[J]. Nature, 2010, 463(7279):318-325.
    [13] Bhat KP, Salazar KL, Balasubramaniyan V, et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma[J]. Genes Dev, 2011, 25(24):2594-2609.
    [14] Yamini B. NF-κB, mesenchymal differentiation and glioblastoma[J]. Cells, 2018, 7(9):E125.
    [15] Jin X, Kim LJY, Wu QL, et al. Targeting glioma stem cells through combined BMI1 and EZH2 inhibition[J]. Nat Med, 2017, 23(11):1352-1361.
    [16] Markwell SM, Ross JL, Olson CL, et al. Necrotic reshaping of the glioma microenvironment drives disease progression[J]. Acta Neuropathol, 2022, 143(3):291-310.
    [17] Guan F, Jiang WF, Bai Y, et al. Purinergic P2X7 receptor mediates the elimination of Trichinella spiralis by activating NF-κB/NLRP3/IL-1β pathway in macrophages[J]. Infect Immun, 2021, 59(5):e00683-e00620.
    [18] Zanoni M, Sarti AC, Zamagni A, et al. Irradiation causes senescence, ATP release, and P2X7 receptor isoform switch in glioblastoma[J]. Cell Death Dis, 2022, 13(1):80.
    [19] Uribe D, Niechi I, Rackov G, et al. Adapt to persist: glioblastoma microenvironment and epigenetic regulation on cell plasticity[J]. Biology (Basel), 2022, 11(2):313.
    [20] Wang ZL, Shi YP, Ying CT, et al. Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-κB signaling[J]. Oncogene, 2021, 40(8):1458-1475.
    [21] Okuyama Y, Tanaka Y, Jiang JJ, et al. Bmi1 regulates IκBα degradation via association with the SCF complex[J]. J Immunol, 2018, 201(8):2264-2272.
    [22] Kim Y, Varn FS, Park SH, et al. Perspective of mesenchymal transformation in glioblastoma[J]. Acta Neuropathol Commun, 2021, 9(1):50.
    [23] Schmitt MJ, Company C, Dramaretska Y, et al. Phenotypic mapping of pathologic cross-talk between glioblastoma and innate immune cells by synthetic genetic tracing[J]. Cancer Discov, 2021, 11(3):754-777.
    [24] Hara T, Chanoch-Myers R, Mathewson ND, et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma[J]. Cancer Cell, 2021, 39(6):779-792.
    [25] Niklasson M, Bergström T, Jarvius M, et al. Mesenchymal transition and increased therapy resistance of glioblastoma cells is related to astrocyte reactivity[J]. J Pathol, 2019, 249(3):295-307.
    [26] Pan YB, Wang SQ, Yang B, et al. Transcriptome analyses reveal molecular mechanisms underlying phenotypic differences among transcriptional subtypes of glioblastoma[J]. J Cell Mol Med, 2020, 24(7):3901-3916.
    [27] Brandes AA, Gil-Gil M, Saran F, et al. A randomized phase II trial (TAMIGA) evaluating the efficacy and safety of continuous bevacizumab through multiple lines of treatment for recurrent glioblastoma[J]. Oncologist, 2019, 24(4):521-528.
    [28] Chandra A, Jahangiri A, Chen W, et al. Clonal ZEB1-driven mesenchymal transition promotes targetable oncologic antiangiogenic therapy resistance[J]. Cancer Res, 2020, 80(7):1498-1511.
    [29] Minata M, Audia A, Shi JF, et al. Phenotypic plasticity of invasive edge glioma stem-like cells in response to ionizing radiation[J]. Cell Rep, 2019, 26(7):1893-1905.
    [30] Zhai K, Huang Z, Huang Q, et al. Pharmacological inhibition of BACE1 suppresses glioblastoma growth by stimulating macrophage phagocytosis of tumor cells[J]. Nat Cancer, 2021, 2(11):1136-1151.
  • 加载中
图(1)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  49
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-07
  • 录用日期:  2022-05-11
  • 修回日期:  2022-05-10

目录

    /

    返回文章
    返回