人脑连接组学指导下的脑胶质瘤手术

张军霞 尤永平

张军霞, 尤永平. 人脑连接组学指导下的脑胶质瘤手术[J]. 中国肿瘤临床, 2022, 49(21): 1098-1102. doi: 10.12354/j.issn.1000-8179.2022.20220198
引用本文: 张军霞, 尤永平. 人脑连接组学指导下的脑胶质瘤手术[J]. 中国肿瘤临床, 2022, 49(21): 1098-1102. doi: 10.12354/j.issn.1000-8179.2022.20220198
Junxia Zhang, Yongping You. Glioma surgery guided by human brain connectomics[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(21): 1098-1102. doi: 10.12354/j.issn.1000-8179.2022.20220198
Citation: Junxia Zhang, Yongping You. Glioma surgery guided by human brain connectomics[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2022, 49(21): 1098-1102. doi: 10.12354/j.issn.1000-8179.2022.20220198

人脑连接组学指导下的脑胶质瘤手术

doi: 10.12354/j.issn.1000-8179.2022.20220198
基金项目: 本文课题受国家自然科学基金(编号:81974389)资助
详细信息
    作者简介:

    张军霞:专业方向为脑胶质瘤外科治疗

    通讯作者:

    尤永平 yypl3@sohu.com

Glioma surgery guided by human brain connectomics

Funds: This work was supported by the National Natural Science Foundation of China (No. 81974389)
More Information
  • 摘要: 随着世界范围内脑计划研究的大范围开展,人脑连接组学研究得到了快速的发展。宏观尺度上的人脑连接组学主要采用脑成像和电生理技术,建立人脑网络的结构和功能连接模式及拓扑特征,进而揭示健康和疾病状态下人脑网络的组织规律和运行机制。目前人脑连接组学,作为大脑结构-功能精准分析的重要手段,在神经系统正常发育、神经系统疾病等领域中不断应用。本文对人脑连接组学的历史发展、研究进展进行综述,探讨人脑连接组学在脑胶质瘤领域的临床应用与潜在挑战。

     

  • 图  1  人脑连接组学图谱(引自人类连接组学计划[5]

    图  2  非传统功能的人脑网络示意图

  • [1] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems[J]. Nat Rev Neurosci, 2009, 10(3):186-198. doi: 10.1038/nrn2575
    [2] Fornito A, Bullmore ET. Connectomics: a new paradigm for understanding brain disease[J]. Eur Neuropsychopharmacol, 2015, 25(5):733-748. doi: 10.1016/j.euroneuro.2014.02.011
    [3] 张艳阳,余新光.人脑连接组学在神经外科中的应用进展[J].中国医学影像学杂志,2017,25(10):789-793. doi: 10.3969/j.issn.1005-5185.2017.10.019
    [4] Sporns O, Tononi G, Kötter R. The human connectome: a structural description of the human brain[J]. PLoS Comput Biol, 2005, 1(4):e42. doi: 10.1371/journal.pcbi.0010042
    [5] Glasser MF, Coalson TS, Robinson EC, et al. A multi-modal parcellation of human cerebral cortex[J]. Nature, 2016, 536(7615):171-178. doi: 10.1038/nature18933
    [6] Doyen S, Nicholas P, Poologaindran A, et al. Connectivity-based parcellation of normal and anatomically distorted human cerebral cortex[J]. Hum Brain Mapp, 2022, 43(4):1358-1369. doi: 10.1002/hbm.25728
    [7] Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations[J]. Neuroimage, 2010, 52(3):1059-1069.
    [8] Schouwenaars IT, de Dreu MJ, Rutten GM, et al. A functional MRI study of presurgical cognitive deficits in glioma patients[J]. Neurooncol Pract, 2021, 8(1):81-90.
    [9] Maniar YM, Peck KK, Jenabi M, et al. Functional MRI shows altered deactivation and a corresponding decrease in functional connectivity of the default mode network in patients with gliomas[J]. AJNR Am J Neuroradiol, 2021, 42(8):1505-1512.
    [10] Chen GM, Zhao LP, Jia YB, et al. Abnormal cerebellum-DMN regions connectivity in unmedicated bipolar II disorder[J]. J Affect Disord, 2019, 243:441-447. doi: 10.1016/j.jad.2018.09.076
    [11] Tordjman M, Madelin G, Gupta PK, et al. Functional connectivity of the default mode, dorsal attention and Fronto-parietal executive control networks in glial tumor patients[J]. J Neurooncol, 2021, 152(2):347-355. doi: 10.1007/s11060-021-03706-w
    [12] Sparacia G, Parla G, Lo Re V, et al. Resting-state functional connectome in patients with brain tumors before and after surgical resection[J]. World Neurosurg, 2020, 141:e182-e194. doi: 10.1016/j.wneu.2020.05.054
    [13] Stoecklein VM, Stoecklein S, Galiè F, et al. Resting-state fMRI detects alterations in whole brain connectivity related to tumor biology in glioma patients[J]. Neuro Oncol, 2020, 22(9):1388-1398. doi: 10.1093/neuonc/noaa044
    [14] Dadario NB, Brahimaj B, Yeung J, et al. Reducing the cognitive footprint of brain tumor surgery[J]. Front Neurol, 2021, 12:711646.
    [15] Androulakis XM, Krebs KA, Jenkins C, et al. Central executive and default mode network intranet work functional connectivity patterns in chronic migraine[J]. J Neurol Disord, 2018, 6(5):393.
    [16] Balaev V, Orlov I, Petrushevsky A, et al. Functional connectivity between salience, default mode and frontoparietal networks in post-stroke depression[J]. J Affect Disord, 2018, 227:554-562. doi: 10.1016/j.jad.2017.11.044
    [17] Catalino MP, Yao S, Green DL, et al. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging[J]. Neurosurg Focus, 2020, 48(2):E9. doi: 10.3171/2019.11.FOCUS19773
    [18] Jiang T, Nam DH, Ram Z, et al. Clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Lett, 2021, 499:60-72. doi: 10.1016/j.canlet.2020.10.050
    [19] Sarubbo S, Duffau H. Connectomic evidences driving a functional approach in neuro-oncological surgery[J]. J Neurosurg Sci, 2021, 65(6):545-547.
    [20] Duffau H. Brain connectomics applied to oncological neuroscience: from a traditional surgical strategy focusing on glioma topography to a meta-network approach[J]. Acta Neurochir (Wien), 2021, 163(4):905-917. doi: 10.1007/s00701-021-04752-z
    [21] Duffau H. Mapping the connectome in awake surgery for gliomas: an update[J]. J Neurosurg Sci, 2017, 61(6):612-630.
    [22] Duffau H. Can non-invasive brain stimulation be considered to facilitate reoperation for low-grade glioma relapse by eliciting neuroplasticity[J]? Front Neurol, 2020, 11:582489.
    [23] Benzagmout M, Gatignol P, Duffau H. Resection of World Health Organization Grade II gliomas involving Broca's area: methodological and functional considerations[J]. Neurosurgery, 2007, 61(4):741-752. doi: 10.1227/01.NEU.0000298902.69473.77
    [24] Sarubbo S, Latini F, Sette E, et al. Is the resection of gliomas in Wernicke's area reliable[J]. Acta Neurochir, 2012, 154(9):1653-1662. doi: 10.1007/s00701-012-1416-z
    [25] Duffau H. Surgical neurooncology is a brain networks surgery: a “connectomic” perspective[J]. World Neurosurg, 2014, 82(3):e405-e407.
    [26] Briggs RG, Allan PG, Poologaindran A, et al. The frontal aslant tract and supplementary motor area syndrome: moving towards a connectomic initiation axis[J]. Cancers (Basel), 2021, 13(5):1116. doi: 10.3390/cancers13051116
    [27] Imms P, Clemente A, Cook M, et al. The structural connectome in traumatic brain injury: a meta-analysis of graph metrics[J]. Neurosci Biobehav Rev, 2019, 99:128-137. doi: 10.1016/j.neubiorev.2019.01.002
    [28] O'Neal CM, Stephens TM, Briggs RG, et al. Navigated transcranial magnetic stimulation following awake craniotomy for resection of glioma: description of two cases[J]. Surg Neurol Int, 2020, 11:433. doi: 10.25259/SNI_628_2020
    [29] Raizman R, Tavor I, Biegon A, et al. Traumatic brain injury severity in a network perspective: a diffusion MRI based connectome study[J]. Sci Rep, 2020, 10(1):9121. doi: 10.1038/s41598-020-65948-4
    [30] Edlow BL, Barra ME, Zhou DW, et al. Personalized connectome mapping to guide targeted therapy and promote recovery of consciousness in the intensive care unit[J]. Neurocrit Care, 2020, 33(2):364-375. doi: 10.1007/s12028-020-01062-7
  • 加载中
图(2)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  39
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 录用日期:  2022-04-13
  • 修回日期:  2022-04-12
  • 网络出版日期:  2022-11-04

目录

    /

    返回文章
    返回