骨髓基质细胞通过TSP-1/CD36通路对急性髓系白血病细胞影响的初步研究

郑雅心 亢俊楠 陈泽慧 王丽娜 郑国光 热西担·努尔买买提 田晨

郑雅心, 亢俊楠, 陈泽慧, 王丽娜, 郑国光, 热西担·努尔买买提, 田晨. 骨髓基质细胞通过TSP-1/CD36通路对急性髓系白血病细胞影响的初步研究[J]. 中国肿瘤临床, 2023, 50(4): 167-171. doi: 10.12354/j.issn.1000-8179.2023.20221087
引用本文: 郑雅心, 亢俊楠, 陈泽慧, 王丽娜, 郑国光, 热西担·努尔买买提, 田晨. 骨髓基质细胞通过TSP-1/CD36通路对急性髓系白血病细胞影响的初步研究[J]. 中国肿瘤临床, 2023, 50(4): 167-171. doi: 10.12354/j.issn.1000-8179.2023.20221087
Yaxin Zheng, Junnan Kang, Zehui Chen, Lina Wang, Guoguang Zheng, Nuermaimaiti Rexidan, Chen Tian. Bone marrow-derived mesenchymal stromal cells affected acute myeloid leukemia cells via the TSP-1/CD36 pathway[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(4): 167-171. doi: 10.12354/j.issn.1000-8179.2023.20221087
Citation: Yaxin Zheng, Junnan Kang, Zehui Chen, Lina Wang, Guoguang Zheng, Nuermaimaiti Rexidan, Chen Tian. Bone marrow-derived mesenchymal stromal cells affected acute myeloid leukemia cells via the TSP-1/CD36 pathway[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(4): 167-171. doi: 10.12354/j.issn.1000-8179.2023.20221087

骨髓基质细胞通过TSP-1/CD36通路对急性髓系白血病细胞影响的初步研究

doi: 10.12354/j.issn.1000-8179.2023.20221087
基金项目: 本文课题受新疆维吾尔自治区自然科学基金面上项目(编号:2022D01A09)、天津市卫生健康科技项目(编号:ZC20171)和天津市医学重点学科(专科)建设项目(编号:TJYXZDXK-009A)资助
详细信息
    作者简介:

    郑雅心:专业方向为血液肿瘤的诊治与研究

    通讯作者:

    田晨 tcgirl2001@sina.com

Bone marrow-derived mesenchymal stromal cells affected acute myeloid leukemia cells via the TSP-1/CD36 pathway

Funds: This work was supported by Natural Science Foundation of Xinjiang Autonomous Region (No. 2022D01A09), Tianjin Health Science and Technology Project (No. ZC20171) and Tianjin Key Medical Discipline (Specialty) Construction Project (No. TJYXZDXK-009A)
More Information
  • 摘要:   目的  探讨骨髓基质细胞(bone marrow-derived mesenchymal stromal cells,BM-MSCs)对急性髓系白血病(acute myeloid leukemia,AML)细胞影响的作用机制。  方法  构建MLL-AF9过表达诱导的AML小鼠模型,通过PCR比较AML小鼠和野生型小鼠(WT)BM-MSCs内TSP-1的表达差异。通过慢病毒载体使AML小鼠来源的BM-MSCs高表达TSP-1后,与AML细胞行transwell共培养,检测AML细胞表面TSP-1受体CD36及CD47的表达及AML细胞的生长情况。在共培养体系中加入CD36抑制剂N-油酰基硫代琥珀酰亚胺,检测AML细胞增殖、凋亡的变化。  结果  AML小鼠BM-MSCs中TSP-1的表达低于对照组。过表达TSP-1的BM-MSCs与AML 细胞行transwell共培养后AML细胞的生长受到抑制,且AML细胞表面的CD36受体表达升高,但CD47表达无明显差异。在共培养体系中加入CD36抑制剂N-油酰基硫代琥珀酰亚胺后,AML细胞增殖加快,凋亡减少。  结论  TSP-1/CD36信号通路有望成为治疗AML的潜在靶点。

     

  • 图  1  AML 小鼠模型的构建

    A: 将过表达MLL-AF9的逆转录病毒载体MSCV-MLL-AF9-PGK-GFP感染B6小鼠来源的Lin-Sca-1+细胞,将感染后GFP+细胞经尾静脉注射至C57小鼠;B、C:建模后14 d解剖小鼠分析脾脏的大小和重量;D、E:建模后14 d解剖小鼠分析肝脏的大小和重量;F:建模后14 d解剖小鼠分析骨髓和脾中白血病细胞的浸润;WT: 野生型小鼠;*:P<0.1;**:P<0.01

    图  2  q-PCR 检测AML小鼠来源的BM-MSCs内TSP-1表达水平

    WT:野生型小鼠;***:P<0.001

    图  3  q-PCR验证感染后BM-MSCs的TSP-1表达量

    ***:P<0.001

    图  4  流式检测CD36及CD47的表达水平

    A:AML原代细胞表面CD36及CD47的表达情况;B:与过表达TSP-1的BM-MSCs行transwell共培养后的AML细胞表面CD36表达水平升高;C:共培养后CD47的表达未见明显改变);**:P<0.01

    图  5  流式检测AML细胞的生长变化

    A,B:经transwell共培养16 h后的AML细胞增殖减少,凋亡增多;C,D:加入CD36抑制剂N-油酰基硫代琥珀酰亚胺, AML细胞的增殖增多,凋亡减少;**:P<0.01;***:P<0.001

  • [1] Forte D, García-Fernández M, Sánchez-Aguilera A, et al. Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy[J]. Cell Metab, 2020, 32(5):829-843. doi: 10.1016/j.cmet.2020.09.001
    [2] Ji DX, He Y, Lu W, et al. Small-sized extracellular vesicles (EVs) derived from acute myeloid leukemia bone marrow mesenchymal stem cells transfer miR-26a-5p to promote acute myeloid leukemia cell proliferation, migration, and invasion[J]. Hum Cell, 2021, 34(3):965-976. doi: 10.1007/s13577-021-00501-7
    [3] Lawler J. The functions of thrombospondin-1 and-2[J]. Curr Opin Cell Biol, 2000, 12(5):634-640. doi: 10.1016/S0955-0674(00)00143-5
    [4] Adams JC. Thrombospondins: multifunctional regulators of cell interactions[J]. Annu Rev Cell Dev Biol, 2001, 17:25-51. doi: 10.1146/annurev.cellbio.17.1.25
    [5] Tian C, Li YY, Wang LN, et al. Blockade of FGF2/FGFR2 partially overcomes bone marrow mesenchymal stromal cells mediated progression of T-cell acute lymphoblastic leukaemia[J]. Cell Death Dis, 2022, 13(11):922. doi: 10.1038/s41419-022-05377-5
    [6] Chen ZH, Zheng YX, Yang YL, et al. Abnormal bone marrow microenvironment: the “harbor” of acute lymphoblastic leukemia cells[J]. Blood Sci, 2021, 3(2):29-34. doi: 10.1097/BS9.0000000000000071
    [7] Tian C, Zheng GG, Zhuang HQ, et al. MicroRNA-494 activation suppresses bone marrow stromal cell-mediated drug resistance in acute myeloid leukemia cells[J]. J Cell Physiol, 2017, 232(6):1387-1395. doi: 10.1002/jcp.25628
    [8] Carter BZ, Mak PY, Wang XM, et al. An ARC-regulated IL1β/cox-2/PGE2/β-catenin/ARC circuit controls leukemia-microenvironment interactions and confers drug resistance in AML[J]. Cancer Res, 2019, 79(6):1165-1177.
    [9] Azadniv M, Myers JR, McMurray HR, et al. Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support[J]. Leukemia, 2020, 34(2):391-403. doi: 10.1038/s41375-019-0568-8
    [10] Zhu LD, Li Q, Wang XG, et al. THBS1 is a novel serum prognostic factors of acute myeloid leukemia[J]. Front Oncol, 2019, 9:1567.
    [11] Kaur S, Bronson SM, Pal-Nath D, et al. Functions of thrombospondin-1 in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(9):4570.
    [12] Wang JC, Li YS. CD36 tango in cancer: signaling pathways and functions[J]. Theranostics, 2019, 9(17):4893-4908. doi: 10.7150/thno.36037
    [13] Chu LY, Ramakrishnan DP, Silverstein RL. Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells[J]. Blood, 2013, 122(10):1822-1832.
    [14] Li KR, Yang M, Yuen PM, et al. Thrombospondin-1 induces apoptosis in primary leukemia and cell lines mediated by CD36 and caspase-3[J]. Int J Mol Med, 2003, 12(6):995-1001.
    [15] Mateo V, Brown EJ, Biron G, et al. Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: link between phosphatidylserine exposure and cytoskeleton organization[J]. Blood, 2002, 100(8):2882-2890. doi: 10.1182/blood-2001-12-0217
    [16] Saumet A, Slimane MB, Lanotte M, et al. Type 3 repeat/C-terminal domain of thrombospondin-1 triggers caspase-independent cell death through CD47/alphavbeta3 in promyelocytic leukemia NB4 cells[J]. Blood, 2005, 106(2):658-667. doi: 10.1182/blood-2004-09-3585
  • 加载中
图(5)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  16
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 录用日期:  2022-12-21
  • 修回日期:  2022-12-05
  • 网络出版日期:  2023-01-03

目录

    /

    返回文章
    返回