肿瘤相关成纤维细胞在结直肠癌中的作用及相关治疗的研究进展

卢成陆 孙燕

卢成陆, 孙燕. 肿瘤相关成纤维细胞在结直肠癌中的作用及相关治疗的研究进展[J]. 中国肿瘤临床, 2023, 50(7): 368-372. doi: 10.12354/j.issn.1000-8179.2023.20221207
引用本文: 卢成陆, 孙燕. 肿瘤相关成纤维细胞在结直肠癌中的作用及相关治疗的研究进展[J]. 中国肿瘤临床, 2023, 50(7): 368-372. doi: 10.12354/j.issn.1000-8179.2023.20221207
Chenglu Lu, Yan Sun. Research progress in the role of cancer-associated fibroblasts in colorectal cancer and related therapies[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(7): 368-372. doi: 10.12354/j.issn.1000-8179.2023.20221207
Citation: Chenglu Lu, Yan Sun. Research progress in the role of cancer-associated fibroblasts in colorectal cancer and related therapies[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(7): 368-372. doi: 10.12354/j.issn.1000-8179.2023.20221207

肿瘤相关成纤维细胞在结直肠癌中的作用及相关治疗的研究进展

doi: 10.12354/j.issn.1000-8179.2023.20221207
基金项目: 本文课题受国家自然科学基金面上项目(编号:81871990)资助
详细信息
    作者简介:

    卢成陆:专业方向为消化道肿瘤病理与生物信息学基础研究

    通讯作者:

    孙燕 E-mail:sunyan@tjmuch.com

Research progress in the role of cancer-associated fibroblasts in colorectal cancer and related therapies

Funds: This work was supported by the National Natural Science Foundation of China (No. 81871990)
More Information
  • 摘要: 肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs)主要来源于肿瘤微环境中被激活的正常成纤维细胞和间充质干细胞。CAFs能够通过分泌多种小分子生物活性物质调控肿瘤细胞的增殖、侵袭、耐药等生物学行为,并通过细胞间相互作用影响微环境中免疫细胞的活性,进而影响肿瘤患者的预后。近年来,关于CAFs的标志物、活化机制、生物作用以及单细胞测序的研究取得一些进展,靶向CAFs治疗也有望成为结直肠癌(colorectal cancer,CRC)新的治疗策略。本文主要对CAFs的来源、活化与募集以及这一细胞亚群在CRC中的研究进展进行综述,为CAFs在CRC中的研究及临床应用提供新的视角。

     

  • [1] 尹周一,王梦圆,游伟程,等.2022美国癌症统计报告解读及中美癌症流行情况对比[J].肿瘤综合治疗电子杂志,2022,8(2):54-63.
    [2] 李佳鑫,孙燕.结直肠癌免疫微环境中肿瘤相关巨噬细胞的作用[J].中国肿瘤临床,2020,47(17):890-896. doi: 10.3969/j.issn.1000-8179.2020.17.748
    [3] Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3):174-186. doi: 10.1038/s41568-019-0238-1
    [4] Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth[J]. Cancer Cell, 2011, 19(2):257-272. doi: 10.1016/j.ccr.2011.01.020
    [5] Deng LF, Jiang NF, Zeng J, et al. The versatile roles of cancer-associated fibroblasts in colorectal cancer and therapeutic implications[J]. Front Cell Dev Biol, 2021, 9:733270. doi: 10.3389/fcell.2021.733270
    [6] Hutton C, Heider F, Blanco-Gomez A, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity[J]. Cancer Cell, 2021, 39(9):1227-1244. doi: 10.1016/j.ccell.2021.06.017
    [7] Barrett RL, Puré E. Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy[J]. eLife, 2020, 9:e57243. doi: 10.7554/eLife.57243
    [8] Frank MH, Wilson BJ, Gold JS, et al. Clinical implications of colorectal cancer stem cells in the age of single-cell omics and targeted therapies[J]. Gastroenterology, 2021, 160(6):1947-1960. doi: 10.1053/j.gastro.2020.12.080
    [9] Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2013, 110(50):20212-20217. doi: 10.1073/pnas.1320318110
    [10] Zhou WJ, Xu G, Wang YQ, et al. Oxidative stress induced autophagy in cancer associated fibroblast enhances proliferation and metabolism of colorectal cancer cells[J]. Cell Cycle, 2017, 16(1):73-81. doi: 10.1080/15384101.2016.1252882
    [11] Feng B, Wu JZ, Shen B, et al. Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures[J]. Cancer Cell Int, 2022, 22(1):166. doi: 10.1186/s12935-022-02599-7
    [12] Kasashima H, Duran A, Martinez-Ordoñez A, et al. Stromal SOX2 upregulation promotes tumorigenesis through the generation of a SFRP1/2-expressing cancer-associated fibroblast population[J]. Dev Cell, 2021, 56(1):95-110. doi: 10.1016/j.devcel.2020.10.014
    [13] Calon A, Espinet E, Palomo-Ponce S, et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation[J]. Cancer Cell, 2012, 22(5):571-584. doi: 10.1016/j.ccr.2012.08.013
    [14] Franzè E, di Grazia A, Sica GS, et al. Interleukin-34 enhances the tumor promoting function of colorectal cancer-associated fibroblasts[J]. Cancers (Basel), 2020, 12(12):3537. doi: 10.3390/cancers12123537
    [15] Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts[J]. Nat Rev Clin Oncol, 2021, 18(12):792-804. doi: 10.1038/s41571-021-00546-5
    [16] 谷俊杰,孙昭,赵林,等.α-平滑肌肌动蛋白表达在进展期结直肠癌化疗疗效预测及预后中的意义[J].中国医学科学院学报,2019,41(1):63-67.
    [17] Wang WY, Tang YA, Xiao Q, et al. Stromal induction of BRD4 phosphorylation results in chromatin remodeling and BET inhibitor resistance in colorectal cancer[J]. Nat Commun, 2021, 12(1):4441. doi: 10.1038/s41467-021-24687-4
    [18] Zhang L, Li ZY, Skrzypczynska KM, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer[J]. Cell, 2020, 181(2):442-459. doi: 10.1016/j.cell.2020.03.048
    [19] Yuan Q, Gu JC, Zhang J, et al. MyD88 in myofibroblasts enhances colitis-associated tumorigenesis via promoting macrophage M2 polarization[J]. Cell Rep, 2021, 34(5):108724. doi: 10.1016/j.celrep.2021.108724
    [20] Zhou Y, Bian SH, Zhou X, et al. Single-cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer[J]. Cancer Cell, 2020, 38(6):818-828. doi: 10.1016/j.ccell.2020.09.015
    [21] Roulis M, Kaklamanos A, Schernthanner M, et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche[J]. Nature, 2020, 580(7804):524-529. doi: 10.1038/s41586-020-2166-3
    [22] Pelka K, Hofree M, Chen JH, et al. Spatially organized multicellular immune hubs in human colorectal cancer[J]. Cell, 2021, 184(18):4734-4752. doi: 10.1016/j.cell.2021.08.003
    [23] Yum MK, Han S, Fink J, et al. Tracing oncogene-driven remodelling of the intestinal stem cell niche[J]. Nature, 2021, 594(7863):442-447. doi: 10.1038/s41586-021-03605-0
    [24] Wu FL, Yang J, Liu JJ, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer[J]. Signal Transduct Target Ther, 2021, 6(1):218. doi: 10.1038/s41392-021-00641-0
    [25] Duperret EK, Trautz A, Ammons D, et al. Alteration of the tumor stroma using a consensus DNA vaccine targeting fibroblast activation protein (FAP) synergizes with antitumor vaccine therapy in mice[J]. Clin Cancer Res, 2018, 24(5):1190-1201. doi: 10.1158/1078-0432.CCR-17-2033
    [26] Scott AM, Wiseman G, Welt S, et al. A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer[J]. Clin Cancer Res, 2003, 9(5):1639-1647.
    [27] Hofheinz RD, al-Batran SE, Hartmann F, et al. Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer[J]. Onkologie, 2003, 26(1):44-48.
    [28] Xu Y, Zhou X, Mei M, et al. Reprograming carcinoma associated fibroblasts by microRNAs[J]. Curr Mol Med, 2017, 17(5):341-349.
    [29] Ferrer-Mayorga G, Gómez-López G, Barbáchano A, et al. Vitamin D receptor expression and associated gene signature in tumour stromal fibroblasts predict clinical outcome in colorectal cancer[J]. Gut, 2017, 66(8):1449-1462. doi: 10.1136/gutjnl-2015-310977
    [30] Zhou SY, Zhen ZP, Paschall AV, et al. FAP-targeted photodynamic therapy mediated by ferritin nanoparticles elicits an immune response against cancer cells and cancer associated fibroblasts[J]. Adv Funct Mater, 2021, 31(7):2007017. doi: 10.1002/adfm.202007017
    [31] Li HP, Courtois ET, Sengupta D, et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors[J]. Nat Genet, 2017, 49(5):708-718. doi: 10.1038/ng.3818
    [32] Yadav VK, Huang YJ, George TA, et al. Preclinical evaluation of the novel small-molecule MSI-N1014 for treating drug-resistant colon cancer via the LGR5/β-catenin/miR-142-3p network and reducing cancer-associated fibroblast transformation[J]. Cancers (Basel), 2020, 12(6):1590. doi: 10.3390/cancers12061590
    [33] Shen Y, Wang XH, Lu JY, et al. Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer[J]. Cancer Cell, 2020, 37(6):800-817. doi: 10.1016/j.ccell.2020.05.005
    [34] Zhang MJ, Li XC, Wu WJ, et al. Regorafenib induces the apoptosis of gastrointestinal cancer-associated fibroblasts by inhibiting AKT phosphorylation[J]. Stem Cells Dev, 2022, 31(13/14):383-394.
  • 加载中
计量
  • 文章访问数:  236
  • HTML全文浏览量:  56
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 录用日期:  2023-02-15
  • 修回日期:  2022-10-11

目录

    /

    返回文章
    返回