外泌体在胃癌诊疗中的研究进展

蒋进勋 张世杰 王震

蒋进勋, 张世杰, 王震. 外泌体在胃癌诊疗中的研究进展[J]. 中国肿瘤临床, 2023, 50(4): 201-205. doi: 10.12354/j.issn.1000-8179.2023.20221286
引用本文: 蒋进勋, 张世杰, 王震. 外泌体在胃癌诊疗中的研究进展[J]. 中国肿瘤临床, 2023, 50(4): 201-205. doi: 10.12354/j.issn.1000-8179.2023.20221286
Jinxun Jiang, Shijie Zhang, Zhen Wang. Research progress of exosomes in the diagnosis and treatment of gastric cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(4): 201-205. doi: 10.12354/j.issn.1000-8179.2023.20221286
Citation: Jinxun Jiang, Shijie Zhang, Zhen Wang. Research progress of exosomes in the diagnosis and treatment of gastric cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(4): 201-205. doi: 10.12354/j.issn.1000-8179.2023.20221286

外泌体在胃癌诊疗中的研究进展

doi: 10.12354/j.issn.1000-8179.2023.20221286
基金项目: 本文课题受国家自然科学基金青年项目(编号:82002492)和广西医科大学第一附属医院“优秀医学英才”科研创新能力培养项目(编号:202207)资助
详细信息
    作者简介:

    蒋进勋:专业方向为胃肠道疾病、胰腺疾病的临床诊疗

    通讯作者:

    王震 wangzhensurgeon@163.com

Research progress of exosomes in the diagnosis and treatment of gastric cancer

Funds: This work was supported by the National Natural Science Foundation of China Youth Project (No. 82002492) and the “Medical Excellence Award” Funded by the Creative Research Development Grant from the First Affiliated Hospital of Guangxi Medical University (No. 202207)
More Information
  • 摘要: 胃癌的发病率和死亡率均较高,早诊早治极为关键,需要更加灵敏的诊断技术与精准的治疗手段,才能在胃癌早期及时发现并将其有效遏制。外泌体是细胞分泌的一种囊泡,其携带多种具有生物活性的小分子,如蛋白质、RNA、DNA等。外泌体可作为细胞间通讯的一种功能介质,传递多种生物信息并介导受体细胞的生物进程。在肿瘤中,外泌体不仅积极参与肿瘤微环境的信息传递,而且具有调节细胞免疫应答的能力。近年来外泌体在肿瘤领域的相关研究取得了一系列进展,其参与胃癌增殖、侵袭、复发和转移、耐药以及新生血管形成等方面的调控。外泌体在胃癌的早期诊断与精准治疗方面具有重要意义,值得深入探索。本文就外泌体在胃癌诊疗中的研究进展进行综述。

     

  • 图  1  外泌体及所含物质调节胃癌细胞的增殖、侵袭、血管生成和迁移(Created with BioRender.com)

    表  1  胃癌中潜在外泌体血浆生物标志物

    研究样品临床应用AUC(%)
    Guo等[27] 外泌体lncRNA-GC1诊断,判断分期90.33
    Tang等[28]血清let-7g-5p诊断75.60
    Sun等[29]血清ITIH4诊断,区分胃癌与正常个体83.94
    Yoon等[30]血清GKN1诊断,判断分期99.54
    Yang等[31]血浆和外泌体中的miR-195-5p诊断74.50
    Yang等[31]血浆和外泌体中的miR-211-5p诊断79.80
    Zheng等[32]血浆和外泌体中的miR-590-5p诊断81.00
    Lu等[33]血浆和外泌体中的miR-92a-3p诊断82.90
    AUC:曲线下面积
    下载: 导出CSV
  • [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660
    [2] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. doi: 10.1126/science.aau6977
    [3] Zhang HY, Yang M, Wu X, et al. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment[J]. Pharmacol Res, 2021, 171:105785. doi: 10.1016/j.phrs.2021.105785
    [4] Rojas A, Araya P, Gonzalez I, et al. Gastric tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1226:23-35.
    [5] Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis[J]. Cell, 2011, 146(6):873-887. doi: 10.1016/j.cell.2011.08.039
    [6] Chen XC, Zhang SQ, Du K, et al. Gastric cancer-secreted exosomal X26nt increases angiogenesis and vascular permeability by targeting VE-cadherin[J]. Cancer Sci, 2021, 112(5):1839-1852. doi: 10.1111/cas.14740
    [7] Xue XX, Huang J, Yu K, et al. YB-1 transferred by gastric cancer exosomes promotes angiogenesis via enhancing the expression of angiogenic factors in vascular endothelial cells[J]. BMC Cancer, 2020, 20(1):996. doi: 10.1186/s12885-020-07509-6
    [8] Du J, Liang Y, Li J, et al. Gastric cancer cell-derived exosomal microRNA-23a promotes angiogenesis by targeting PTEN[J]. Front Oncol, 2020, 10:326. doi: 10.3389/fonc.2020.00326
    [9] Zhang Z, Sun CY, Zheng Y, et al. circFCHO2 promotes gastric cancer progression by activating the JAK1/STAT3 pathway via sponging miR-194-5p[J]. Cell Cycle, 2022, 21(20):2145-2164. doi: 10.1080/15384101.2022.2087280
    [10] Chen ZL, Xie Y, Chen WD, et al. MicroRNA-6785-5p-loaded human umbilical cord mesenchymal stem cells-derived exosomes suppress angiogenesis and metastasis in gastric cancer via INHBA[J]. Life Sci, 2021, 284:119222. doi: 10.1016/j.lfs.2021.119222
    [11] Yoon JH, Choi BJ, Nam SW, et al. Gastric cancer exosomes contribute to the field cancerization of gastric epithelial cells surrounding gastric cancer[J]. Gastric Cancer, 2022, 25(3):490-502. doi: 10.1007/s10120-021-01269-3
    [12] Shi H, Huang S, Qin MD, et al. Exosomal circ_0088300 derived from cancer-associated fibroblasts acts as a miR-1305 sponge and promotes gastric carcinoma cell tumorigenesis[J]. Front Cell Dev Biol, 2021, 9:676319. doi: 10.3389/fcell.2021.676319
    [13] Wang YS, Shang K, Zhang NG, et al. Tumor-associated macrophage-derived exosomes promote the progression of gastric cancer by regulating the P38MAPK signaling pathway and the immune checkpoint PD-L1[J]. Cancer Biother Radiopharm, 2021. doi: 10.1089/cbr.2021.0218. [Epub ahead of print].
    [14] Wei SC, Peng L, Yang JJ, et al. Exosomal transfer of miR-15b-3p enhances tumorigenesis and malignant transformation through the DYNLT1/Caspase-3/Caspase-9 signaling pathway in gastric cancer[J]. J Exp Clin Cancer Res, 2020, 39(1):32.
    [15] Zhu LY, Zhang SS, Chen SD, et al. Exosomal miR-552-5p promotes tumorigenesis and disease progression via the PTEN/TOB1 axis in gastric cancer[J]. J Cancer, 2022, 13(3):890-905. doi: 10.7150/jca.66903
    [16] Tokuhisa M, Ichikawa Y, Kosaka N, et al. Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer[J]. PLoS One, 2015, 10(7):e0130472.
    [17] Ohzawa H, Saito A, Kumagai Y, et al. Reduced expression of exosomal miR-29s in peritoneal fluid is a useful predictor of peritoneal recurrence after curative resection of gastric cancer with serosal involvement[J]. Oncol Rep, 2020, 43(4):1081-1088.
    [18] Soeda N, Iinuma H, Suzuki Y, et al. Plasma exosome-encapsulated microRNA-21 and microRNA-92a are promising biomarkers for the prediction of peritoneal recurrence in patients with gastric cancer[J]. Oncol Lett, 2019, 18(5):4467-4480.
    [19] Zhu M, Zhang N, Ma JW, et al. Integration of exosomal miR-106a and mesothelial cells facilitates gastric cancer peritoneal dissemination[J]. Cell Signal, 2022, 91:110230. doi: 10.1016/j.cellsig.2021.110230
    [20] Qiu SK, Xie L, Lu C, et al. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis[J]. J Exp Clin Cancer Res, 2022, 41(1):296. doi: 10.1186/s13046-022-02499-8
    [21] Shen XJ, Kong S, Ma S, et al. Hsa_circ_0000437 promotes pathogenesis of gastric cancer and lymph node metastasis[J]. Oncogene, 2022, 41(42):4724-4735. doi: 10.1038/s41388-022-02449-w
    [22] Lampropoulou DI, Pliakou E, Aravantinos G, et al. The role of exosomal non-coding RNAs in colorectal cancer drug resistance[J]. Int J Mol Sci, 2022, 23(3):1473. doi: 10.3390/ijms23031473
    [23] Wang M, Qiu R, Yu SR, et al. Paclitaxel-resistant gastric cancer MGC-803 cells promote epithelial-to-mesenchymal transition and chemoresistance in paclitaxel-sensitive cells via exosomal delivery of miR-155-5p[J]. Int J Oncol, 2019, 54(1):326-338.
    [24] Yao WJ, Guo P, Mu QM, et al. Exosome-derived circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells[J]. Cancer Biother Radiopharm, 2021, 36(4):347-359.
    [25] Lin H, Zhang L, Zhang CH, et al. Exosomal miR-500a-3p promotes cisplatin resistance and stemness via negatively regulating FBXW7 in gastric cancer[J]. J Cell Mol Med, 2020, 24(16):8930-8941. doi: 10.1111/jcmm.15524
    [26] Sun JY, Wang X, Zha JM et al. TFAP2E methylation promotes 5-fluorouracil resistance via exosomal miR-106a-5p and miR-421 in gastric cancer MGC-803 cells[J]. Mol Med Rep, 2019, 20(1):323-331.
    [27] Guo X, Lv XH, Ru Y, et al. Circulating exosomal gastric cancer-associated long noncoding RNA1 as a biomarker for early detection and monitoring progression of gastric cancer: a multiphase study[J]. JAMA Surg, 2020, 155(7): 572-579.
    [28] Tang SL, Cheng JN, Yao YF, et al. Combination of four serum exosomal MiRNAs as novel diagnostic biomarkers for early-stage gastric cancer[J]. Front Genet, 2020, 11:237. doi: 10.3389/fgene.2020.00237
    [29] Sun YY, Jin J, Jing HY, et al. ITIH4 is a novel serum biomarker for early gastric cancer diagnosis[J]. Clin Chim Acta, 2021, 523:365-373. doi: 10.1016/j.cca.2021.10.022
    [30] Yoon JH, Park YG, Nam SW, et al. The diagnostic value of serum gastrokine 1 (GKN1) protein in gastric cancer[J]. Cancer Med, 2019, 8(12):5507-5514. doi: 10.1002/cam4.2457
    [31] Yang JJ, Li X, Wei SC, et al. Evaluation of the diagnostic potential of a plasma exosomal miRNAs panel for gastric cancer[J]. Front Oncol, 2021, 11:683465. doi: 10.3389/fonc.2021.683465
    [32] Zheng GD, Xu ZY, Hu C, et al. Exosomal miR-590-5p in serum as a biomarker for the diagnosis and prognosis of gastric cancer[J]. Front Mol Biosci, 2021, 8:636566. doi: 10.3389/fmolb.2021.636566
    [33] Lu X, Lu JX, Wang SQ, et al. Circulating serum exosomal miR-92a-3p as a novel biomarker for early diagnosis of gastric cancer[J]. Future Oncol, 2021, 17(8):907-919. doi: 10.2217/fon-2020-0792
    [34] Qiao L, Hu SQ, Huang K, et al. Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs[J]. Theranostics, 2020, 10(8):3474-3487. doi: 10.7150/thno.39434
    [35] Zhang HY, Wang Y, Bai M, et al. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA[J]. Cancer Sci, 2018, 109(3):629-641. doi: 10.1111/cas.13488
    [36] Ji RB, Zhang X, Gu HB, et al. MiR-374a-5p: a new target for diagnosis and drug resistance therapy in gastric cancer[J]. Mol Ther Nucleic Acids, 2019, 18:320-331. doi: 10.1016/j.omtn.2019.07.025
    [37] Kim MS, Haney MJ, Zhao YL, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations[J]. Nanomed-Nanotechnol Biol Med, 2018, 14(1):195-204. doi: 10.1016/j.nano.2017.09.011
    [38] Li ZT, Suo B, Long G, et al. Exosomal miRNA-16-5p derived from M1 macrophages enhances T cell-dependent immune response by regulating PD-L1 in gastric cancer[J]. Front Cell Dev Biol, 2020, 8:572689. doi: 10.3389/fcell.2020.572689
    [39] Zhu DM, Zhang TF, Li Y, et al. Tumor-derived exosomes co-delivering aggregation-induced emission luminogens and proton pump inhibitors for tumor glutamine starvation therapy and enhanced type-I photodynamic therapy[J]. Biomaterials, 2022, 283:121462. doi: 10.1016/j.biomaterials.2022.121462
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  13
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 录用日期:  2023-01-12
  • 修回日期:  2022-10-31

目录

    /

    返回文章
    返回