小鼠动物模型中骨髓播散肿瘤细胞的检测方法

岳晓敏 黄玉凡 李晓青

岳晓敏, 黄玉凡, 李晓青. 小鼠动物模型中骨髓播散肿瘤细胞的检测方法[J]. 中国肿瘤临床, 2023, 50(5): 227-231. doi: 10.12354/j.issn.1000-8179.2023.20221304
引用本文: 岳晓敏, 黄玉凡, 李晓青. 小鼠动物模型中骨髓播散肿瘤细胞的检测方法[J]. 中国肿瘤临床, 2023, 50(5): 227-231. doi: 10.12354/j.issn.1000-8179.2023.20221304
Xiaomin Yue, Yufan Huang, Xiaoqing Li. Detection methods for disseminated tumor cells in the bone marrow of mice[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(5): 227-231. doi: 10.12354/j.issn.1000-8179.2023.20221304
Citation: Xiaomin Yue, Yufan Huang, Xiaoqing Li. Detection methods for disseminated tumor cells in the bone marrow of mice[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(5): 227-231. doi: 10.12354/j.issn.1000-8179.2023.20221304

小鼠动物模型中骨髓播散肿瘤细胞的检测方法

doi: 10.12354/j.issn.1000-8179.2023.20221304
基金项目: 本文课题受国家自然科学基金项目(编号:82273285)和天津市医学重点学科(专科)建设项目((编号:TJYXZDXK-009A)资助
详细信息
    作者简介:

    岳晓敏:专业方向为乳腺癌转移基础研究

    通讯作者:

    李晓青 xqli@tmu.edu.cn

Detection methods for disseminated tumor cells in the bone marrow of mice

Funds: This work was supported by Natural Science Foundation of China (No. 82273285) and Tianjin Key Medical Discipline (Specialty) Construction Project (No. TJYXZDXK-009A)
More Information
  • 摘要:   目的  探究小鼠骨髓中播散肿瘤细胞(disseminated tumor cells,DTCs )的检测方法。  方法  采用慢病毒感染的方法构建MDA-MB-231-GFP/Luc乳腺癌细胞系,将MDA-MB-231-GFP/Luc细胞经左心室接种于NOD-SCID小鼠体内,构建骨髓DTCs小鼠模型。采用荧光定量RT-qPCR、流式细胞计数、骨组织连续切片免疫荧光染色三种检测方法对小鼠骨髓DTCs进行定量和组织学定位研究。  结果  荧光定量RT-qPCR法和流式细胞计数法的检测下限分别为22个和25个绿色荧光蛋白阳性(GFP+)细胞。骨组织连续切片免疫荧光染色法虽然不能定量骨髓DTCs数量,但可观察到GFP+ DTCs在骨组织中的分布,定位于成骨细胞或骨基质附近。  结论  三种检测方法联合使用可满足小鼠骨转移研究动物实验中骨髓DTCs的定量和定位研究的需求,可为乳腺癌骨转移和骨髓中休眠癌细胞研究提供方法学支持。

     

  • 图  1  MDA-MB-231-GFP/Luc细胞的构建

    A:GFP绿色荧光(镜下×100);B:Luc发光

    图  2  小鼠骨髓DTCs动物模型的构建

    A:小鼠骨髓DTCs动物模型;B:活体成像;C:X线、组织病理检测(H&E、TRAP染色×400)

    图  3  荧光定量RT-qPCR法检测两组小鼠骨髓中的DTCs

    A:扩增曲线;B:标准曲线;C:GFP+ DTCs数;**:P<0.01

    图  4  流式细胞计数法检测两组小鼠骨髓中的DTCs

    A:流式图; B:GFP+ DTCs数

    图  5  免疫荧光染色法检测两组小鼠骨髓中的DTCs (IFA×200)

    箭头:GFP+ DTCs

  • [1] Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity[J]. Clin Cancer Res, 2006, 12(20 Pt 2): 6243s-6249s.
    [2] Wang MN, Xia F, Wei YQ, et al. Molecular mechanisms and clinical management of cancer bone metastasis[J]. Bone Res, 2020, 8(1):30.
    [3] Zhang WJ, Bado IL, Hu JY, et al. The bone microenvironment invigorates metastatic seeds for further dissemination[J]. Cell, 2021, 184(9):2471-2486. doi: 10.1016/j.cell.2021.03.011
    [4] Satcher RL, Zhang XHF. Evolving cancer-niche interactions and therapeutic targets during bone metastasis[J]. Nat Rev Cancer, 2022, 22(2):85-101. doi: 10.1038/s41568-021-00406-5
    [5] Bado IL, Zhang WJ, Hu JY, et al. The bone microenvironment increases phenotypic plasticity of ER+ breast cancer cells[J]. Dev Cell, 2021, 56(8):1100-1117. doi: 10.1016/j.devcel.2021.03.008
    [6] Nobre AR, Risson E, Singh DK, et al. Bone marrow NG2+/Nestin+ mesenchymal stem cells drive DTC dormancy via TGFβ2[J]. Nat Cancer, 2021, 2(3):327-339. doi: 10.1038/s43018-021-00179-8
    [7] Li XQ, Zhang R, Lu H, et al. Extracellular vesicle-packaged CDH11 and ITGA5 induce the premetastatic niche for bone colonization of breast cancer cells[J]. Cancer Res, 2022, 82(8):1560-1574. doi: 10.1158/0008-5472.CAN-21-1331
    [8] Li XQ, Lu JT, Tan CC, et al. RUNX2 promotes breast cancer bone metastasis by increasing integrin α5-mediated colonization[J]. Cancer Lett, 2016, 380(1):78-86. doi: 10.1016/j.canlet.2016.06.007
    [9] Minn AJ, Kang YB, Serganova I, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors[J]. J Clin Invest, 2005, 115(1):44-55. doi: 10.1172/JCI22320
    [10] Wang H, Yu CJ, Gao X, et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells[J]. Cancer Cell, 2015, 27(2):193-210. doi: 10.1016/j.ccell.2014.11.017
    [11] Phan TG, Croucher PI. The dormant cancer cell life cycle[J]. Nat Rev Cancer, 2020, 20(7):398-411. doi: 10.1038/s41568-020-0263-0
    [12] O'Neill K, Lyons SK, Gallagher WM, et al. Bioluminescent imaging: a critical tool in pre-clinical oncology research[J]. J Pathol, 2010, 220(3):317-327. doi: 10.1002/path.2656
    [13] Shao MM, Chan SK, Yu AMC, et al. Keratin expression in breast cancers[J]. Virchows Arch, 2012, 461(3):313-322. doi: 10.1007/s00428-012-1289-9
    [14] Mitas M, Mikhitarian K, Walters C, et al. Quantitative real-time RT-PCR detection of breast cancer micrometastasis using a multigene marker panel[J]. Int J Cancer, 2001, 93(2):162-171. doi: 10.1002/ijc.1312
    [15] Chen L, Yi XF, Guo P, et al. The role of bone marrow-derived cells in the origin of liver cancer revealed by single-cell sequencing[J]. Cancer Biol Med, 2020, 17(1):142-153.
  • 加载中
图(5)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  8
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 录用日期:  2023-01-06
  • 修回日期:  2022-12-30

目录

    /

    返回文章
    返回