干细胞样CD8+T细胞在抗肿瘤免疫治疗中的地位与演进效应

林果 姚卓然 王徽 纳飞飞 卢铀

林果, 姚卓然, 王徽, 纳飞飞, 卢铀. 干细胞样CD8+T细胞在抗肿瘤免疫治疗中的地位与演进效应[J]. 中国肿瘤临床, 2023, 50(7): 373-376. doi: 10.12354/j.issn.1000-8179.2023.20221449
引用本文: 林果, 姚卓然, 王徽, 纳飞飞, 卢铀. 干细胞样CD8+T细胞在抗肿瘤免疫治疗中的地位与演进效应[J]. 中国肿瘤临床, 2023, 50(7): 373-376. doi: 10.12354/j.issn.1000-8179.2023.20221449
Guo Lin, Zhuoran Yao, Hui Wang, Feifei Na, You Lu. Role and mechanism of action of stem-like CD8+T cells in anti-tumor immunotherapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(7): 373-376. doi: 10.12354/j.issn.1000-8179.2023.20221449
Citation: Guo Lin, Zhuoran Yao, Hui Wang, Feifei Na, You Lu. Role and mechanism of action of stem-like CD8+T cells in anti-tumor immunotherapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(7): 373-376. doi: 10.12354/j.issn.1000-8179.2023.20221449

干细胞样CD8+T细胞在抗肿瘤免疫治疗中的地位与演进效应

doi: 10.12354/j.issn.1000-8179.2023.20221449
基金项目: 本文课题受四川大学华西医院学科卓越发展1·3·5工程项目(编号:ZYJC21003)资助
详细信息
    作者简介:

    林果:专业方向胸部肿瘤的临床和转化研究

    通讯作者:

    卢铀 radyoulu@hotmail.com

Role and mechanism of action of stem-like CD8+T cells in anti-tumor immunotherapy

Funds: This work was supported by 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (No. ZYJC21003)
More Information
  • 摘要: 以抗细胞程序性死亡-1/细胞程序性死亡-配体1(programmed cell death-1/programmed cell death-ligand 1,PD-1/PD-L1)为代表的免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)治疗显现了CD8+T细胞在治疗和可能治愈恶性肿瘤方面的潜力。但仅约20%的患者对ICIs治疗获益,因此阐明CD8+T细胞在免疫微环境中的有效抗肿瘤功能,及其分子和空间的决定因素尤为重要。具有自我更新、增殖分化和杀伤肿瘤细胞能力的干细胞样CD8+T细胞亚群,在介导抗肿瘤免疫效应方面扮演极为重要的角色。本文就干细胞样CD8+T细胞在抗肿瘤免疫循环中的地位与演进效应进行综述。

     

  • 图  1  T细胞分化轨迹

  • [1] Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium[J]. Front Pharmacol, 2018, 9:1300. doi: 10.3389/fphar.2018.01300
    [2] Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors[J]. Cancer Cell, 2020, 37(4):443-455. doi: 10.1016/j.ccell.2020.03.017
    [3] Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade[J]. Nat Rev Immunol, 2020, 20(1):25-39. doi: 10.1038/s41577-019-0218-4
    [4] Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4):707-723.
    [5] Pitt JM, Vétizou M, Daillère R, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: Tumor-intrinsic and -extrinsic factors[J]. Immunity, 2016, 44(6):1255-1269. doi: 10.1016/j.immuni.2016.06.001
    [6] Philip M, Schietinger A. CD8+T cell differentiation and dysfunction in cancer[J]. Nat Rev Immunol, 2022, 22(4):209-223. doi: 10.1038/s41577-021-00574-3
    [7] Scott AC, Dündar F, Zumbo P, et al. Tox is a critical regulator of tumour-specific t cell differentiation[J]. Nature, 2019, 571(7764):270-274. doi: 10.1038/s41586-019-1324-y
    [8] Khan O, Giles JR, McDonald S, et al. Tox transcriptionally and epigenetically programs cd8(+) t cell exhaustion[J]. Nature, 2019, 571(7764):211-218.
    [9] Yost KE, Satpathy AT, Wells DK, et al. Clonal replacement of tumor-specific t cells following pd-1 blockade[J]. Nat Med, 2019, 25(8):1251-1259.
    [10] Connolly KA, Kuchroo M, Venkat A, et al. A reservoir of stem-like CD8+T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response[J]. Sci Immunol, 2021, 6(64):eabg7836.
    [11] Gearty SV, Dündar F, Zumbo P, et al. An autoimmune stem-like CD8+T cell population drives type 1 diabetes[J]. Nature, 2022, 602(7895):156-161.
    [12] Krishna S, Lowery FJ, Copeland AR, et al. Stem-like cd8 t cells mediate response of adoptive cell immunotherapy against human cancer[J]. Science, 2020, 370(6522):1328-1334. doi: 10.1126/science.abb9847
    [13] Galletti G, De Simone G, Mazza EMC, et al. Two subsets of stem-like CD8+ memory t cell progenitors with distinct fate commitments in humans[J]. Nat Immunol, 2020, 21(12):1552-1562. doi: 10.1038/s41590-020-0791-5
    [14] Garris CS, Arlauckas SP, Kohler RH, et al. Successful anti-pd-1 cancer immunotherapy requires t cell-dendritic cell crosstalk involving the cytokines ifn-γ and il-12[J]. Immunity, 2018, 49(6):1148-1161.
    [15] Li Z, Tuong ZK, Dean I, et al. In vivo labeling reveals continuous trafficking of TCF-1+ T cells between tumor and lymphoid tissue[J]. J Exp Med, 2022, 219(6): e20210749.
    [16] Rutishauser RL, Martins GA, Kalachikov S, et al. Transcriptional repressor blimp-1 promotes cd8(+) t cell terminal differentiation and represses the acquisition of central memory t cell properties[J]. Immunity, 2009, 31(2):296-308.
    [17] Siddiqui I, Schaeuble K, Chennupati V, et al. Intratumoral TCF1(+)PD-1(+)CD8(+) t cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy[J]. Immunity, 2019, 50(1):195-211.
    [18] Bangs DJ, Tsitsiklis A, Steier Z, et al. Cxcr3 regulates stem and proliferative CD8+ T cells during chronic infection by promoting interactions with DCS in splenic bridging channels[J]. Cell Rep, 2022, 38(3):110266. doi: 10.1016/j.celrep.2021.110266
    [19] Buchholz VR, Busch DH. Back to the future: effector fate during t cell exhaustion[J]. Immunity, 2019, 51(6):970-972. doi: 10.1016/j.immuni.2019.11.007
    [20] Yi L, Yang L. Stem-like t cells and niches: Implications in human health and disease[J]. Front Immunol, 2022, 13:907172. doi: 10.3389/fimmu.2022.907172
    [21] Wieland D, Kemming J, Schuch A, et al. TCF1(+) hepatitis c virus-specific CD8+ T cells are maintained after cessation of chronic antigen stimulation[J]. Nat Commun, 2017, 8:15050. doi: 10.1038/ncomms15050
    [22] Feng Q, Liu Z, Yu X, et al. Lactate increases stemness of CD8+ T cells to augment anti-tumor immunity[J]. Nat Commun, 2022, 13(1):4981. doi: 10.1038/s41467-022-32521-8
    [23] Wu T, Ji Y, Moseman EA, et al. The tcf1-bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness[J]. Sci Immunol, 2016, 1(6):eaai8593.
    [24] Zhao X, Shan Q, Xue HH. TCF1 in T cell immunity: A broadened frontier[J]. Nat Rev Immunol, 2022, 22(3):147-157. doi: 10.1038/s41577-021-00563-6
    [25] Chan JD, Lai J, Slaney CY, et al. Cellular networks controlling T cell persistence in adoptive cell therapy[J]. Nat Rev Immunol, 2021, 21(12):769-784. doi: 10.1038/s41577-021-00539-6
    [26] Crespo J, Sun H, Welling TH, et al. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment[J]. Curr Opin Immunol, 2013, 25(2):214-221. doi: 10.1016/j.coi.2012.12.003
    [27] Hudson WH, Gensheimer J, Hashimoto M, et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1(+) stem-like CD8+ T cells during chronic infection[J]. Immunity, 2019, 51(6):1043-1058. doi: 10.1016/j.immuni.2019.11.002
    [28] Kanev K, Wu M, Drews A, et al. Proliferation-competent TCF1+ CD8 T cells in dysfunctional populations are CD4 T cell help independent[J]. Proc Natl Acad Sci U S A, 2019, 116(40):20070-20076. doi: 10.1073/pnas.1902701116
    [29] Chen CY, Ueha S, Ishiwata Y, et al. Combining an alarmin hmgn1 peptide with PD-l1 blockade results in robust antitumor effects with a concomitant increase of stem-like/progenitor exhaustedCD8+ T cells[J]. Cancer Immunol Res, 2021, 9(10):1214-1228. doi: 10.1158/2326-6066.CIR-21-0265
    [30] Gaudreau PO, Negrao MV, Mitchell KG, et al. Neoadjuvant chemotherapy increases cytotoxic T cell, tissue resident memory T cell, and B cell infiltration in resectable nsclc[J]. J Thorac Oncol, 2021, 16(1):127-139. doi: 10.1016/j.jtho.2020.09.027
    [31] Huang Q, Wu X, Wang Z, et al. The primordial differentiation of tumor-specific memory CD8+T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes[J]. Cell, 2022, 185(22):4049-4066.
    [32] Heuser C, Gattinoni L. C-myb redefines the hierarchy of stem-like T cells[J]. Nat Immunol, 2022, 23(10):1405-1407. doi: 10.1038/s41590-022-01319-7
    [33] Jansen CS, Prokhnevska N, Master VA, et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells[J]. Nature, 2019, 576(7787):465-470. doi: 10.1038/s41586-019-1836-5
  • 加载中
图(1)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  32
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 录用日期:  2023-01-11
  • 修回日期:  2023-01-05

目录

    /

    返回文章
    返回