肿瘤相关巨噬细胞糖代谢重编程及靶向治疗

胡馨元 孙一卿 王颖梅 薛凤霞

胡馨元, 孙一卿, 王颖梅, 薛凤霞. 肿瘤相关巨噬细胞糖代谢重编程及靶向治疗[J]. 中国肿瘤临床, 2023, 50(7): 363-367. doi: 10.12354/j.issn.1000-8179.2023.20221619
引用本文: 胡馨元, 孙一卿, 王颖梅, 薛凤霞. 肿瘤相关巨噬细胞糖代谢重编程及靶向治疗[J]. 中国肿瘤临床, 2023, 50(7): 363-367. doi: 10.12354/j.issn.1000-8179.2023.20221619
Xinyuan Hu, Yiqing Sun, Yingmei Wang, Fengxia Xue. Glucose metabolism reprogramming in tumor-associated macrophages and targeted therapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(7): 363-367. doi: 10.12354/j.issn.1000-8179.2023.20221619
Citation: Xinyuan Hu, Yiqing Sun, Yingmei Wang, Fengxia Xue. Glucose metabolism reprogramming in tumor-associated macrophages and targeted therapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(7): 363-367. doi: 10.12354/j.issn.1000-8179.2023.20221619

肿瘤相关巨噬细胞糖代谢重编程及靶向治疗

doi: 10.12354/j.issn.1000-8179.2023.20221619
基金项目: 本文课题受国家自然科学基金面上项目(编号:82172626)、天津市自然科学基金重点项目(编号:20JCZDJC00330)和天津市医学重点学科(专科)建设项目(编号:TJYXZDXK-031A)资助
详细信息
    作者简介:

    胡馨元:专业方向为妇科肿瘤诊治

    通讯作者:

    王颖梅 wangyingmei@tmu.edu.cn

Glucose metabolism reprogramming in tumor-associated macrophages and targeted therapy

Funds: This work was supported by the National Natural Science Foundation of China (No.82172626),the Science and Technology Project of Tianjin (No.20JCZDJC00330) and Tianjin Key Medical Discipline (Specialty) Construction Project (No. TJYXZDXK-031A)
More Information
  • 摘要: 肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)作为肿瘤微环境(tumor microenvironment,TME)中重要的免疫细胞,具有高度异质性及可塑性,在肿瘤细胞分泌的细胞因子刺激下,可发生表型、代谢及功能变化。TAMs代谢改变以糖代谢重编程为主,M1型TAMs有氧糖酵解、磷酸戊糖途径增强,三羧酸循环减弱,具有抗肿瘤功能;M2型TAMs具有完整的三羧酸循环,可促进肿瘤进展。而在TME作用下TAMs具有多种表现形式,其糖代谢重编程可影响肿瘤迁移、侵袭及血管生成,而具体作用机制尚不明确。本文旨在探讨TAMs糖代谢重编程作用机制及其与肿瘤免疫相关性,提示TME中TAMs糖代谢重编程对肿瘤发展和靶向治疗有重要意义,可为肿瘤治疗提供新思路。

     

  • 图  1  M1型TAMs糖代谢重编程

    图  2  M2型TAMs糖代谢重编程

    表  1  靶向TAMs极化的临床试验药物

    药物靶点和机制肿瘤类型临床试验编号分期
    PLX3397CSF1R抑制剂实体瘤NCT02452424Ⅰ、Ⅱ
    IMC-CS4CSF1R抑制剂实体瘤NCT01346358
    FPA008抗CSF1R抗体晚期胰腺癌NCT03336216
    MLN1202抗CCR2单克隆抗体转移性癌NCT01015560
    CP-870, 893激动性抗CD40抗体实体瘤NCT02157831
    APX005M激动性抗CD40抗体消化系统肿瘤NCT03165994
    2DGHK-2抑制剂实体瘤NCT00096707
    下载: 导出CSV
  • [1] Arneth B. Tumor microenvironment[J]. Medicina (Kaunas), 2019, 56(1):15. doi: 10.3390/medicina56010015
    [2] Chen D, Zhang X, Li Z, et al. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages[J]. Theranostics, 2021, 11(3):1016-1030.
    [3] Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(13):6995. doi: 10.3390/ijms22136995
    [4] Wang J, Mi S, Ding M, et al. Metabolism and polarization regulation of macrophages in the tumor microenvironment[J]. Cancer Lett, 2022, 543:215766. doi: 10.1016/j.canlet.2022.215766
    [5] Reinfeld BI, Madden MZ, Wolf MM, et al. Cell-programmed nutrient partitioning in the tumour microenvironment[J]. Nature, 2021, 593(7858):282-288. doi: 10.1038/s41586-021-03442-1
    [6] Liu Y, Xu R, Gu H, et al. Metabolic reprogramming in macrophage responses[J]. Biomark Res, 2021, 9(1):1. doi: 10.1186/s40364-020-00251-y
    [7] Wu L, Zhang X, Zheng L, et al. RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis[J]. Cancer Immunol Res, 2020, 8(5):710-721. doi: 10.1158/2326-6066.CIR-19-0261
    [8] M de-Brito N, Duncan-Moretti J, C da-Costa H, et al. Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(2):118604. doi: 10.1016/j.bbamcr.2019.118604
    [9] Moon JS, Hisata S, Park MA, et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation[J]. Cell Rep, 2015, 12(1):102-115. doi: 10.1016/j.celrep.2015.05.046
    [10] El Sayed R, Haibe Y, Amhaz G, et al. Metabolic factors affecting tumor immunogenicity: what is happening at the cellular level[J]. Int J Mol Sci, 2021, 22(4):2142. doi: 10.3390/ijms22042142
    [11] Yu Q, Wang Y, Dong L, et al. Regulations of glycolytic activities on macrophages functions in tumor and infectious inflammation[J]. Front Cell Infect Microbiol, 2020, 10:287. doi: 10.3389/fcimb.2020.00287
    [12] Jiang H, Shi H, Sun M, et al. PFKFB3-Driven macrophage glycolytic metabolism is a crucial component of innate antiviral defense[J]. J Immunol, 2016, 197(7):2880-2890. doi: 10.4049/jimmunol.1600474
    [13] Zhang Q, Wang J, Yadav DK, et al. Glucose metabolism: the metabolic signature of tumor associated macrophage[J]. Front Immunol, 2021, 12:702580. doi: 10.3389/fimmu.2021.702580
    [14] Xie M, Yu Y, Kang R, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation[J]. Nat Commun, 2016, 7:13280. doi: 10.1038/ncomms13280
    [15] Haschemi A, Kosma P, Gille L, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism[J]. Cell Metab, 2012, 15(6):813-826. doi: 10.1016/j.cmet.2012.04.023
    [16] Jha AK, Huang SC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization[J]. Immunity, 2015, 42(3):419-430. doi: 10.1016/j.immuni.2015.02.005
    [17] Palmieri EM, Gonzalez-Cotto M, Baseler WA, et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase[J]. Nat Commun, 2020, 11(1):698. doi: 10.1038/s41467-020-14433-7
    [18] Sag D, Carling D, Stout RD, et al. Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype[J]. J Immunol, 2008, 181(12):8633-8641.
    [19] Rendra E, Riabov V, Mossel DM, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes[J]. Immunobiology, 2019, 224(2):242-253. doi: 10.1016/j.imbio.2018.11.010
    [20] Nielsen SR, Schmid MC. Macrophages as key drivers of cancerprogression and metastasis[J]. Mediators Inflamm, 2017, 2017:9624760.
    [21] Larionova I, Kazakova E, Patysheva M, et al. Transcriptional, epigenetic and metabolic programming of tumor-associated macrophages[J]. Cancers (Basel), 2020, 12(6):1411. doi: 10.3390/cancers12061411
    [22] Wenes M, Shang M, Di Matteo M, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis[J]. Cell Metab, 2016, 24(5):701-715. doi: 10.1016/j.cmet.2016.09.008
    [23] Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer[J]. Nat Rev Drug Discov, 2018, 17(12):887-904. doi: 10.1038/nrd.2018.169
    [24] Yang H, Zhang Q, Xu M, et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis[J]. Mol Cancer, 2020, 19(1):41.
    [25] Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221:107753. doi: 10.1016/j.pharmthera.2020.107753
    [26] Li DK, Wang W. Characteristics and clinical trial results of agonistic anti-CD40 antibodies in the treatment of malignancies[J]. Oncol Lett, 2020, 20(5):176.
    [27] Chiang CF, Chao TT, Su YF, et al. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling[J]. Oncotarget, 2017, 8(13):20706-20718. doi: 10.18632/oncotarget.14982
    [28] Jiang M, Li X, Zhang J, et al. Dual inhibition of endoplasmic reticulum stress and oxidation stress manipulates the polarization of macrophages under hypoxia to sensitize immunotherapy[J]. ACS Nano, 2021, 15(9):14522-14534. doi: 10.1021/acsnano.1c04068
    [29] Wokoun U, Hellriegel M, Emons G, et al. Co-treatment of breast cancer cells with pharmacologic doses of 2-deoxy-D-glucose and metformin: Starving tumors[J]. Oncol Rep, 2017, 37(4):2418-2424. doi: 10.3892/or.2017.5491
    [30] Raez LE, Papadopoulos K, Ricart AD, et al. A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors[J]. Cancer Chemother Pharmacol, 2013, 71(2):523-530.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  15
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 录用日期:  2023-02-17
  • 修回日期:  2023-01-19

目录

    /

    返回文章
    返回