microRNAs在肿瘤表观遗传调控的研究进展

马筱秋 蔡建春

马筱秋, 蔡建春. microRNAs在肿瘤表观遗传调控的研究进展[J]. 中国肿瘤临床, 2012, 39(4): 237-240. doi: 10.3969/j.issn.1000-8179.2012.04.015
引用本文: 马筱秋, 蔡建春. microRNAs在肿瘤表观遗传调控的研究进展[J]. 中国肿瘤临床, 2012, 39(4): 237-240. doi: 10.3969/j.issn.1000-8179.2012.04.015
Xiaoqiu MA, Jianchun CAI. Advances in the Research on the MicroRNAs Related to Tumorous Epigenetic Modifications[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2012, 39(4): 237-240. doi: 10.3969/j.issn.1000-8179.2012.04.015
Citation: Xiaoqiu MA, Jianchun CAI. Advances in the Research on the MicroRNAs Related to Tumorous Epigenetic Modifications[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2012, 39(4): 237-240. doi: 10.3969/j.issn.1000-8179.2012.04.015

microRNAs在肿瘤表观遗传调控的研究进展

doi: 10.3969/j.issn.1000-8179.2012.04.015
基金项目: 

福建省自然科学基金面上项目基金 2009D004

详细信息
    通讯作者:

    蔡建春    jianchunfh2@sina.com

Advances in the Research on the MicroRNAs Related to Tumorous Epigenetic Modifications

Funds: 

the Natural Science Foundation of Fujian Province 2009D004

More Information
  • 摘要: microRNAs和表观遗传修饰都在肿瘤的发生发展过程中发挥重要作用研究发现microRNAs与表观遗传之间存在复杂的调控关系, 主要通过DNA甲基化和组蛋白修饰等方式与microRNAs进行相互调节, 这为肿瘤的机制研究提供了新的方向。利用表观遗传的可逆性调节相关microRNAs的表达可抑制肿瘤生长, 在肿瘤治疗方面显示出巨大潜力。本文主要综述近年来microRNAs与肿瘤表观遗传相关领域的研究进展。

     

  • [1] Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215 -233. doi: 10.1016/j.cell.2009.01.002
    [2] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1): 15-20. doi: 10.1016/j.cell.2004.12.035
    [3] Duan R Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA[J]. Hum Mol Genet, 2007, 16(9): 1124-1131. doi: 10.1093/hmg/ddm062
    [4] Ueda T, Volinia S, Okumura H. et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis[J]. Lancet Oncol, 2010, 11(2): 136-146. doi: 10.1016/S1470-2045(09)70343-2
    [5] Steinemann D, Tauscher M, Praulich I, et al. Mutations in the let-7 binding site-a mechanism of RAS activation in juvenile myelomonocytic leukemia[J]? Haematologica, 2010, 95(9): 1616. http://www.haematologica.org/cgi/reprint/95/9/1616-a.pdf
    [6] Ferdin J, Kunej T, Calin GA. MicroRNA: Genomic Association with Cancer Predisposition[J]J Assoc Genet Technol, 2011, 37(1): 11-19. http://www.ncbi.nlm.nih.gov/pubmed/21430351
    [7] Boominathan L. The guardians of the genome(p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network[J]. Cancer Metastasis Rev, 2010, 29(4): 613-639. doi: 10.1007/s10555-010-9257-9
    [8] Ibragimova I, Ibanez de Caceres I, Hoffman AM, et al. Global reactivation of epigenetically silenced genes in prostate cancer[J]. Cancer Prev Res(Phila), 2010, 3(9): 1084-1092. doi: 10.1158/1940-6207.CAPR-10-0039
    [9] Lopez J, Percharde M, Coley HM, et al. The context and potential of epigenetics in oncology[J]. Br J Cancer, 2009, 100(4): 571-577. doi: 10.1038/sj.bjc.6604930
    [10] Kurdistani SK. Histone modifications in cancer biology and prognosis[J]. Prog Drug Res, 2011, 67: 91-106. doi: 10.1007%2F978-3-7643-8989-5_5.pdf
    [11] Seligson DB, Horvath S, Shi T, et al. Global histone modification patterns predict risk of prostate cancer recurrence[J]. Nature, 2005, 435 (7046): 1262-1266. doi: 10.1038/nature03672
    [12] Vallot C, Stransky N, Bernard-Pierrot I, et al. A novel epigenetic phenotype associated with the most aggressive pathway of bladder tumor progression. [J]. J Nad Cancer Inst, 2011, 103(1): 47-60. doi: 10.1093/jnci/djq470
    [13] Weber B, Stresemann C, Brueckner B, et al. Methylation of human microRNA genes in normal and neoplastic cells[J]. Cell Cycle, 2007, 6(9): 1001-1005. doi: 10.4161/cc.6.9.4209
    [14] Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells[J]. Cancer Res, 2007, 67(4): 1424-1429. doi: 10.1158/0008-5472.CAN-06-4218
    [15] Toyota M, Suzuki H, Sasaki Y. et al. Epigenetic silencing of microRNA -34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer[J]. Cancer Res, 2008, 68(11): 4123-4132. doi: 10.1158/0008-5472.CAN-08-0325
    [16] Lujambio A, Calin GA, Villanuneva A, et al. A microRNA DNA methylation signature for human cancer metastasis[J]. Proc Natl Acad Sci U S A, 2008, 105(36): 13556-13561. doi: 10.1073/pnas.0803055105
    [17] Nguyen T, Kuo C, Nicholl MB, et al. Downregulation of microRNA -29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma[J]. Epigenetics, 2011, 6 (3): 388-394. doi: 10.4161/epi.6.3.14056
    [18] Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA medryltransferases[J]. Nat Struct Mol Biol, 2008, 15(3): 268-279. doi: 10.1038/nsmb.1399
    [19] Zhang J, Yang Y, Yang T, et al. MicroRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity[J]. Br J Cancer, 2010, 103(8): 1215-1220. doi: 10.1038/sj.bjc.6605895
    [20] Noonan EJ, Place RF, Pookot D, et al. MiR-449a targets HDAC-1 and induces growth arrest in prostate cancer[J]. Oncogene, 2009, 28 (14): 1714-1724. doi: 10.1038/onc.2009.19
    [21] Li X, Liu J, Zhou R, et al. Gene silencing of MIR22 in acute lymphoblastic leukaemia involves histone modifications independent of promoter DNA methylation[J]. Br J Haematol, 2010, 148(1): 69-79. doi: 10.1111/j.1365-2141.2009.07920.x
    [22] Bandres E, Agirre X, Bitarte N, et al. Epigenetic regulation of microRNA expression in colorectal cancer[J]. Int J Cancer, 2009, 125(11): 2737-2743. doi: 10.1002/ijc.24638
    [23] Varambally S, Cao Q, Mani RS, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer[J]. Science, 2008, 322(5908): 1695-1699. doi: 10.1126/science.1165395
    [24] Bandres E, Bitarte N, Arias F, et al. MicroRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells[J]. Clin Cancer Res, 2009, 15(7): 2281-2290. doi: 10.1158/1078-0432.CCR-08-1818
    [25] FujimotoJ, Kong M, LceJJ, et al. Validation of a novel statistical model for assessing the synergy of combined-agent cancer chemoprevention[J], Cancer Prev Res(Phila), 2010, 3(8): 917 -928. doi: 10.1158/1940-6207.CAPR-10-0129
    [26] Saito Y, Liang G, Egger G, et al. Specific acnvation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chroma tin-modifying drugs in human cancer cells[J]. Cancer Cell, 2006, 9(6): 435-443. doi: 10.1016/j.ccr.2006.04.020
  • 加载中
计量
  • 文章访问数:  14
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-15
  • 修回日期:  2011-11-15

目录

    /

    返回文章
    返回