恶性黑色素瘤的免疫治疗进展

WeberJeffrey

WeberJeffrey. 恶性黑色素瘤的免疫治疗进展[J]. 中国肿瘤临床, 2012, 39(9): 486-489. doi: 10.3969/j.issn.1000-8179.2012.09.002
引用本文: WeberJeffrey. 恶性黑色素瘤的免疫治疗进展[J]. 中国肿瘤临床, 2012, 39(9): 486-489. doi: 10.3969/j.issn.1000-8179.2012.09.002

恶性黑色素瘤的免疫治疗进展

doi: 10.3969/j.issn.1000-8179.2012.09.002
详细信息
    作者简介:

    WeberJeffrey:Jeffery Weber博士,美国Moffitt肿瘤中心教授,Donald A. Adam综合黑色素瘤研究中心主任。主要研究方向包括肿瘤患者行疫苗治疗后T细胞反应的监测和评价,建立研究免疫调节抗体协同T细胞反应的体外模型,明确免疫调节抗体放大患者T细胞效应的机制。在临床方面主要从事恶性黑色素瘤以及其他恶性肿瘤的免疫治疗工作,包括应用疫苗、过继性免疫治疗、树突状细胞治疗和免疫调节抗体进行的临床治疗。在New England Journal of Medicine、Journal of Clinical Oncology和Clinical Cancer Research等知名学术期刊发表论文百余篇

    通讯作者:

    Jeffrey Weber  Jeffrey.weber@moffitt.org

  • [1] Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer[J]. N Engl J Med, 2010. 363(5): 411-422. doi: 10.1056/NEJMoa1001294
    [2] Zarei S, Schwenter F, Luy P, et al. Role of GM-CSF signaling in cell-based tumor immunization[J]. Blood, 2009, 113(26): 6658-6668. doi: 10.1182/blood-2008-06-161075
    [3] HodiFS, Butler M, Oble DA, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients[J]. Proc Natl Acad Sci U S A, 2008, 105(8): 3005-3010. doi: 10.1073/pnas.0712237105
    [4] Gajewski TF, Louahed J, Brichard VG. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy[J]. Cancer J, 2010, 16(4): 399-403. doi: 10.1097/PPO.0b013e3181eacbd8
    [5] Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993[J]. J Clin Oncol, 1999, 17(7): 2105-2116. doi: 10.1200/JCO.1999.17.7.2105
    [6] Schwartzentruber DJ, Lawson DH, Richards JM, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma[J]. N Engl J Med, 2011, 364(22): 2119-2127. doi: 10.1056/NEJMoa1012863
    [7] Zhang L, Kerkar SP, Yu Z, et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment[J]. Mol Ther, 2011, 19(4): 751-759. doi: 10.1038/mt.2010.313
    [8] Petrella TM, Belnager K. Interleukin-21 (IL-21) activity in patients with metastatic melanoma (MM)[J]. J Clin Oncol, 2010, 28: 15s(abstract 8507).
    [9] Lawson DH, Tarhini AA. E4697: phase Ⅲ cooperative group study of yeast-derived granulocyte macrophage colony-stimulating factor (GM-CSF) versus placebo as adjuvant treatment of patients with completely resected stage Ⅲ-Ⅳ melanoma[J]. J Clin Oncol, 2010, 28S (abstract 8504).
    [10] Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8): 711-723. doi: 10.1056/NEJMoa1003466
    [11] Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma[J]. N Engl J Med, 2011, 364(26): 2517-2526. doi: 10.1056/NEJMoa1104621
    [12] Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation[J]. N Engl J Med, 2011, 364(26): 2507-2516. doi: 10.1056/NEJMoa1103782
    [13] Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates [J]. J Clin Oncol, 2010, 28(19): 3167-3175. doi: 10.1200/JCO.2009.26.7609
    [14] Curran MA, Montalvo W, Yagita H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors[J]. Proc Natl Acad Sci U S A, 2010, 107(9): 4275-4280. doi: 10.1073/pnas.0915174107
    [15] Vonderheide RH, Flaherty KT, Khalil M, et al. Clinical activity and immune modulation in cancer patients treated with CP-870, 893, a novel CD40 agonist monoclonal antibody[J]. J Clin Oncol, 2007, 25(7): 876-883. doi: 10.1200/JCO.2006.08.3311
    [16] Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report[J]. N Engl J Med, 1988, 319(25): 1676-1680. doi: 10.1056/NEJM198812223192527
    [17] Rosenberg SA, Restifo NP, Yang JC, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy[J]. Nat Rev Cancer, 2008. 8(4): 299-308. doi: 10.1038/nrc2355
    [18] Rosenberg SA. Cell transfer immunotherapy for metastatic solid cancer-what clinicians need to know[J]. Nat Rev Clin Oncol, 2011, 8(10): 577-585. doi: 10.1038/nrclinonc.2011.116
    [19] Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes[J]. Science, 2006, 314(5796): 126-129. doi: 10.1126/science.1129003
    [20] Robbins PF, Morgan RA, Feldman SA, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1[J]. J Clin Oncol, 2011, 29(7): 917-924. doi: 10.1200/JCO.2010.32.2537
    [21] Cartellieri M, Bachmann M, Feldmann A, et al. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer[J]. J Biomed Biotechnol, 2010, 2010: 956304.
    [22] Park TS, Rosenberg SA, Morgan RA. Rosenberg, and R.A. Morgan, Treating cancer with genetically engineered T cells[J]. Trends Biotechnol, 2011, 29(11): 550-557. doi: 10.1016/j.tibtech.2011.04.009
  • 加载中
计量
  • 文章访问数:  36
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-03
  • 修回日期:  2012-04-11

目录

    /

    返回文章
    返回