肿瘤干细胞对肿瘤血管生成的作用及调控机制的最新研究进展

李慧

李慧. 肿瘤干细胞对肿瘤血管生成的作用及调控机制的最新研究进展[J]. 中国肿瘤临床, 2012, 39(9): 493-496. doi: 10.3969/j.issn.1000-8179.2012.09.004
引用本文: 李慧. 肿瘤干细胞对肿瘤血管生成的作用及调控机制的最新研究进展[J]. 中国肿瘤临床, 2012, 39(9): 493-496. doi: 10.3969/j.issn.1000-8179.2012.09.004

肿瘤干细胞对肿瘤血管生成的作用及调控机制的最新研究进展

doi: 10.3969/j.issn.1000-8179.2012.09.004
详细信息
    作者简介:

    李慧,副研究员,硕士生导师。现担任中国医药生物技术协会医药生物技术临床应用专业委员会学术秘书。主要研究方向为免疫细胞治疗、肿瘤疫苗、肿瘤免疫抑制等基础与应用研究。先后获得国家自然科学基金2项,承担或参与国家及省部级科研课题10余项,获天津市科技进步二等奖1项,在国内外期刊发表论文50余篇,其中SCI收录论文20篇

    通讯作者:

    李慧  lihui_0105@yahoo.com

  • [1] Singh K, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature, 2004, 432(7015): 396-401. doi: 10.1038/nature03128
    [2] Kang MK, Hur BI, Ko MH, et al. Potential identity of multi-potential cancer stem-like subpopulation after radiation of cultured brain glioma[J]. BMC Neuro Sci, 2009, 9(15): 1471-2202. http://www.brainlife.org/fulltext/2008/kang_mk080130.pdf
    [3] Kaur B, Khwaja FW, Severson EA, et al. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis[J]. Neuro Oncol, 2005, 7(2): 134-153. doi: 10.1215/S1152851704001115
    [4] Zijlstra A, Seandel M, Kupriyanova TA, et al. Proangiogenic role of neotrophillike inflammatory heterophils during neovascularization induced by growth factors and human tumor cells[J]. Blood, 2006, 107(1): 317-327. doi: 10.1182/blood-2005-04-1458
    [5] Bergers G, Hanahan D, Coussens LM. Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis[J]. Int J Dev Biol, 1998, 42(7): 995-1002. http://hanahan-lab.epfl.ch/files/content/sites/hanahanlab/files/pdf/ft995.pdf
    [6] Plate KH, Breier G, Weich HA, et al. Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms[J]. Int J Cancer, 1994, 59(4): 520-529. doi: 10.1002/ijc.2910590415
    [7] Plate KH, Breier G, Weich HA, et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo[J]. Nature, 1992, 359(6398): 845-848. doi: 10.1038/359845a0
    [8] Kerbel RS. Tumor angiogenesis[J]. N Engl J Med, 2008, 358: 2039-2049. doi: 10.1056/NEJMra0706596
    [9] Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor[J]. Cancer Res, 2006, 66(16): 7843-7848. doi: 10.1158/0008-5472.CAN-06-1010
    [10] Pellegatta S, Poliani PL, Corno D, et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas[J]. Cancer Res, 2006, 66(21): 10247-10252. doi: 10.1158/0008-5472.CAN-06-2048
    [11] Yao XH, Ping YF, Chen JH, et al. Glioblastoma stem cells produce vascular endothelial growth factor by activation of a G-protein coupled formylpeptide receptor FPR[J]. J Pathol, 2008, 215(4): 369-376. doi: 10.1002/path.2356
    [12] Reardon DA, Wen PY. Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents[J]. Oncologist, 2006, 11(2): 152-164. doi: 10.1634/theoncologist.11-2-152
    [13] Folkins C, Shked Y, Man S, et al. Glioma Tumor Stem-Like Cells Promote Tumor Angiogenesis and Vasculogenesis via Vascular Endothelial Growth Factor and Stromal-Derived Factor 1[J]. Cancer Res, 2009, 69(18): 7243-7251. doi: 10.1158/0008-5472.CAN-09-0167
    [14] Alvero AB, Fu HH, Holmberg J, et al. Stem- like Ovarian Cancer Cells can Serve as Tumor Vascular Progenitors[J]. Stem Cells, 2009, 27(10): 2405-2413. doi: 10.1002/stem.191
    [15] Yang XR, Xu Y, Yu B, et al. High expression levels of putative hepatic stem/progenitor cell biomarkers related to tumour angiogenesis and poor prognosis of hepatocellular carcinoma[J]. Gut, 2010, 59 (7): 953-962. doi: 10.1136/gut.2008.176271
    [16] Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells[J]. Cancer Cell, 2007, 11(1): 69-82. doi: 10.1016/j.ccr.2006.11.020
    [17] Zhou L, Wei XD, Cheng L, et al. CD133, one of the markers of cancer stem cells in Hep-2 cell[J]. Laryngoscope, 2007, 117(3): 455-460. doi: 10.1097/01.mlg.0000251586.15299.35
    [18] Kaidi A, Williams AC, Paraskeva C. Interaction between beta-cate-ninand HIF-1 promotes cellular adaptation to hypoxia[J]. Nat Cell Biol, 2007, 9(2): 210-217. doi: 10.1038/ncb1534
    [19] Hu J, Deng X, Bian X, et al. The expression of functional chemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma[J]. Clin Cancer Res, 2005, 11 (13): 4658-4665. doi: 10.1158/1078-0432.CCR-04-1798
    [20] Bruno S, Bussolati B, Grange C, et al. CD133 + renal progenitor cells contribute to tumor angiogenesis[J]. Am J Orthop, 2006, 169 (6): 2223-2235. http://www.fertstert.org/article/S0002-9440(10)62680-6/pdf
    [21] Folkins C, Man S, Xu P, et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors[J]. Cancer Res, 2007, 67(8): 3560-3564. doi: 10.1158/0008-5472.CAN-06-4238
    [22] Shao ES, Lin L, Yao Y, et al. Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells[J]. Blood, 2009, 114(10): 2197-2206. doi: 10.1182/blood-2009-01-199166
    [23] Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells[J]. Nature, 2006, 444(7120): 761-765. doi: 10.1038/nature05349
    [24] Androutsellis-Theotokis A, Leker RR, Soldner F, et al. Notch signalling regulates stem cell numbers in vitro and in vivo[J]. Nature, 2006, 442(7104): 823-826. doi: 10.1038/nature04940
    [25] Gridley T. Notch signaling in vascular development and physiology [J]. Development, 2007, 134(15): 2709-2718. doi: 10.1242/dev.004184
    [26] Hovinga KE, Shimizu F, Wang R, et al. Inhibition of Notch Signaling in Glioblastoma Targets Cancer Stem Cells Via an Endothelial Cell Intermediate[J]. Stem Cells, 2010, 28(6): 1019-1029. doi: 10.1002/stem.429
    [27] Lee DF, Kuo HP, Chen CT, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway [J]. Cell, 2007, 130(3): 440-455. doi: 10.1016/j.cell.2007.05.058
    [28] Sabbagh M, Ifergan I, Moumdjian R, et al. Human Glioblastoma Cancer Stem Cells Promote Intra-tumoral Immune Regulatory Functions[C]. Tumor Immunity, 2009: 38.
    [29] Schatton T, Schütte U, Frank NY, et al. Modulation of T-Cell Activation by Malignant Melanoma Initiating Cells[J]. Cancer Res, 2010, 70(2): 697-708. doi: 10.1158/0008-5472.CAN-09-1592
    [30] Facciabene A, Peng X, Hagemann IS, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells[J]. Nature, 2011, 475(7355): 226-230. doi: 10.1038/nature10169
    [31] Gupta S, Joshi K, Wig JD, et al. Intratumoral FOXP3 expression in infiltrating breast carcinoma: Its association with clinicopathologic parameters and angiogenesis[J]. Acta Oncol, 2007, 46(6): 792-797. doi: 10.1080/02841860701233443
    [32] Adotevi O, Pere H, Ravel P, et al. A Decrease of Regulatory T Cells Correlates With Overall Survival After Sunitinib-based Antiangiogenic Therapy in Metastatic Renal Cancer Patients[J]. J Immunother, 2010, 33(9): 991-998. doi: 10.1097/CJI.0b013e3181f4c208
    [33] Li B, Lalani AS, Harding TC, et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy[J]. Clin Cancer Res, 2006, 12(22): 6808-6816. doi: 10.1158/1078-0432.CCR-06-1558
    [34] Liu G, Ma H, Qiu L, et al. Phenotypic and functional switch of macrophages induced by regulatory CD4 +CD25 + T cells in mice[J]. Immunol Cell Biol, 2011, 89(1): 130-142. doi: 10.1038/icb.2010.70
    [35] Zamarron BF, Chen W. Dual Roles of Immune Cells and Their Factors in Cancer Development and Progression[J]. Int J Biol Sci, 2011, 7(5): 651-658. doi: 10.7150/ijbs.7.651
    [36] Werno C, Menrad H, Weigert A, et al. Knockout of HIF-1α in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses[J]. Carcinogenesis, 2010, 31 (10): 1863-1872. doi: 10.1093/carcin/bgq088
    [37] Kenny PA, Lee GY, Bissell MJ. Targeting the tumor microenvironment[J]. Front Biosci, 2007, 12: 3468-3474. doi: 10.2741/2327
    [38] Hanna E, Quick J, Libutti SK. The tumor microenvironment: a novel target for cancer therapy[J]. Oral Dis, 2009, 15(1): 8-17. doi: 10.1111/j.1601-0825.2008.01471.x
  • 加载中
计量
  • 文章访问数:  13
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-01
  • 修回日期:  2012-04-11

目录

    /

    返回文章
    返回