74例肺癌患者GVAX治疗前后外周血树突状细胞变化及其临床意义

曹杉 任宝柱 张新伟 韩颖 张维红 惠珍珍 戚颖 杨雪娜 任秀宝

曹杉, 任宝柱, 张新伟, 韩颖, 张维红, 惠珍珍, 戚颖, 杨雪娜, 任秀宝. 74例肺癌患者GVAX治疗前后外周血树突状细胞变化及其临床意义[J]. 中国肿瘤临床, 2012, 39(9): 514-518. doi: 10.3969/j.issn.1000-8179.2012.09.009
引用本文: 曹杉, 任宝柱, 张新伟, 韩颖, 张维红, 惠珍珍, 戚颖, 杨雪娜, 任秀宝. 74例肺癌患者GVAX治疗前后外周血树突状细胞变化及其临床意义[J]. 中国肿瘤临床, 2012, 39(9): 514-518. doi: 10.3969/j.issn.1000-8179.2012.09.009
Shan CAO, Baozhu REN, Xinwei ZHANG, Ying HAN, Weihong ZHANG, Zhenzhen HUI, Ying QI, Xuena YANG, Xiubao REN. Changes in Dendritic Cells of Peripheral Blood in 74 Lung Cancer Patients before and after GVAX Treatment and Their Clinical Significance[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2012, 39(9): 514-518. doi: 10.3969/j.issn.1000-8179.2012.09.009
Citation: Shan CAO, Baozhu REN, Xinwei ZHANG, Ying HAN, Weihong ZHANG, Zhenzhen HUI, Ying QI, Xuena YANG, Xiubao REN. Changes in Dendritic Cells of Peripheral Blood in 74 Lung Cancer Patients before and after GVAX Treatment and Their Clinical Significance[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2012, 39(9): 514-518. doi: 10.3969/j.issn.1000-8179.2012.09.009

74例肺癌患者GVAX治疗前后外周血树突状细胞变化及其临床意义

doi: 10.3969/j.issn.1000-8179.2012.09.009
详细信息
    通讯作者:

    任秀宝  rwziyi@yahoo.com

Changes in Dendritic Cells of Peripheral Blood in 74 Lung Cancer Patients before and after GVAX Treatment and Their Clinical Significance

More Information
  • 摘要:   目的   探讨粒-巨噬细胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)基因修饰的肿瘤细胞疫苗治疗前后肺癌患者外周血中DC两个不同亚群(DC1,DC2)的比例、治疗前后比例变化与临床病理特征的相关性及对生存的影响。   方法   对74例接受GM-CSF基因修饰的肿瘤细胞疫苗(GM- CSF modified tumor cell vaccine,GVAX)治疗的肺癌患者,采用流式细胞技术检测患者治疗前后外周血DC及淋巴细胞亚群的比例,分析治疗前后DC比例的变化、治疗前后DC比例与治疗前血清标志物及免疫细胞的关系、治疗前后DC比例对肺癌患者生存的影响。   结果   接受GVAX疫苗治疗后外周血DC1与DC2比例无明显变化(PDC1=0.786,PDC2=0.779);神经烯醇化酶(NSE)水平升高组中的DC亚群比例高于NSE水平正常组;治疗后DC2比例与治疗前Treg呈负相关;对于早期肺癌患者,治疗后DC2比例低于均值者的生存时间比高于均值者的生存时间明显延长。   结论   治疗后DC2比例可作为早期患者GVAX疫苗疗效及判断预后的免疫指标,其对预后的影响可能与患者外周血Treg比例有一定的相关性。

     

  • 图  1  NSE正常组与升高组中DC1与DC2比例

    A:GVAX治疗前,NSE升高组与正常组中DC1值;B:GVAX治疗后,NSE升高组与正常组中DC1值;C:GVAX治疗前后,NSE升高组与正常组中DC1变化值;D:GVAX治疗前,NSE升高组与正常组中DC2值;E:GVAX治疗后,NSE升高组与正常组中DC2值;F:GVAX治疗前后,NSE升高组与正常组中DC2变化值;1:NSE升高组;2:NSE正常组

    Figure  1.  Distribution of DC1 and DC2 in the normal and high-level NSE groups

    图  2  早期肺癌患者治疗后DC2不同比例组的生存曲线

    Figure  2.  The survival curves of early lung cancer patients with different proportion of DC2 after GVAX therapy

    图  3  晚期肺癌患者治疗后DC2不同比例组的生存曲线

    Figure  3.  The survival curves of advanced lung cancer patients with different proportion of DC2 after GVAX therapy

    表  1  GVAX治疗前后肺癌患者外周血DC细胞分布  x±s,%

    Table  1.   Distribution of DCs before and after GVAX vaccination in the different groups  x±s, %

    表  2  DC与GVAX治疗前实验室检测指标相关性

    Table  2.   Correlation between DC and indices tested in the laboratory before GVAX treatment

  • [1] 邹小农. 中国肺癌流行病学[J]. 中华肿瘤防治杂志, 2007, 14(12): 881-883. doi: 10.3969/j.issn.1673-5269.2007.12.001
    [2] Nemunaitis J, Jahan T, Ross H, et al. Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer[J]. Cancer Gene Ther, 2006, 13(6): 555-562. doi: 10.1038/sj.cgt.7700922
    [3] Huang AY, Bruce AT, Pardoll DM, et al. In vivo cross-priming of MHC class I-restricted antigens requires TAP transporter[J]. Immunity, 1996, 4(4): 349-355. doi: 10.1016/S1074-7613(00)80248-4
    [4] Huang AY, Golumbek P, Ahmdzadeh M, et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens[J]. Science, 1994, 264(5161): 961-965. doi: 10.1126/science.7513904
    [5] 杜春娟, 于津浦, 李慧, 等. GM- CSF修饰肿瘤细胞疫苗治疗前后肺癌患者Treg的变化及其临床意义[J]. 中国肿瘤生物治疗, 2011.18(5): 473-479. doi: 10.3872/j.issn.1007-385X.2011.05.002
    [6] Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. morphology, quantitation, tissue distribution[J]. J Exp Med, 1973, 137(5): 1142-1162. doi: 10.1084/jem.137.5.1142
    [7] Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice[J]. J Immunol, 2007, 178(1): 5-25. http://www.ncbi.nlm.nih.gov/pubmed/17182535
    [8] Hege KM, Jooss K, Pardoll D. GM-CSF gene-modifed cancer cell immunotherapies: of mice and men[J]. Int Rev Immunol, 2006, 25 (5-6): 321-352. doi: 10.1080/08830180600992498
    [9] Small EJ, Sacks N, Nemunaitis J, et al. Granulocyte-macrophage colony-stimulating factor-secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer[J]. Clin Cancer Res, 2007, 13(13): 3883-3891. doi: 10.1158/1078-0432.CCR-06-2937
    [10] Jaffee EM, Hruban RH, Biedrzycki B, et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: A phase I trial of safety and immune activation[J]. J Clin Oncol, 2001, 19(1): 145-156. doi: 10.1200/JCO.2001.19.1.145
    [11] Luiten RM, Kueter EW, Mooi W, Gallee MP, et al. Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients [J]. J Clin Oncol, 2005, 23(35): 8978-8991. doi: 10.1200/JCO.2005.01.6816
    [12] 康红刚, 王运良, 于津浦, 等. GM-CSF修饰的异体肿瘤细胞疫苗治疗晚期肿瘤的Ⅰ期临床试验[J]. 中国医药生物技术, 2008, 3(6)∶420-424. doi: 10.3969/j.issn.1673-713X.2008.06.006
    [13] Simons JW, Carducci MA, Mikhak B, et al. Phase I/Ⅱ trial of an allogeneic cellular immunotherapy in hormone-naïve prostate cancer [J]. Clin Cancer Res 2006, 12(11Pt1): 3394-3401. http://pdfs.semanticscholar.org/759e/3cd4a2b3cd993a06ccb91697563c92d9be14.pdf
    [14] Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha chains(CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune disease[J]. J Immunol, 1995, 155 (3): 1151-1164. http://www.ncbi.nlm.nih.gov/pubmed/7636184
    [15] Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med, 2004, 10(9): 942-949. doi: 10.1038/nm1093
    [16] ZouW. Regulatory T cells, tumour immunity and immunotherapy [J]. Nat Rev Immunol, 2006, 6(4): 295-307. doi: 10.1038/nri1806
    [17] Moseman EA, Liang X, Dawson AJ, et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxy nucleotides induce the generation of CD4+CD25+regulatory T cells[J]. J Immunol, 2004, 173 (7): 4433-4442. doi: 10.4049/jimmunol.173.7.4433
    [18] Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effect or function by inducible costimulator(ICOS)[J]. Curr Opin Immunol, 2010, 22(3): 326-332. doi: 10.1016/j.coi.2010.01.001
    [19] Ito T, Hanabuchi S, Wang YH, et al. Two functional subsets of Foxp3+ regulatory T cells in human thymus and periphery[J]. Immunity, 2008, 28(6): 870-880. doi: 10.1016/j.immuni.2008.03.018
    [20] Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell2 mediated suppression of tumor clearance[J]. Immunity, 2007, 27(4): 635-646. doi: 10.1016/j.immuni.2007.08.014
    [21] Gondek DC, Lu LF, Quezada SA, et al. Cutting edge: contact-mediated suppression by CD4 + CD25 + regulatory cells involves a granzyme B-dependent, perforin-independent mechanism[J]. J Immunol, 2005, 174(4): 1783-1786. doi: 10.4049/jimmunol.174.4.1783
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-03
  • 修回日期:  2012-04-18

目录

    /

    返回文章
    返回