长链非编码RNA在肺癌中的功能及机制研究

赵艳华 张新丽 张文玲

赵艳华, 张新丽, 张文玲. 长链非编码RNA在肺癌中的功能及机制研究[J]. 中国肿瘤临床, 2013, 40(23): 1473-1476. doi: 10.3969/j.issn.1000-8179.20130372
引用本文: 赵艳华, 张新丽, 张文玲. 长链非编码RNA在肺癌中的功能及机制研究[J]. 中国肿瘤临床, 2013, 40(23): 1473-1476. doi: 10.3969/j.issn.1000-8179.20130372
Yanhua ZHAO, Xinli ZHANG, Wenling ZHANG. Functions and mechanisms of long non-coding RNAs in lung cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2013, 40(23): 1473-1476. doi: 10.3969/j.issn.1000-8179.20130372
Citation: Yanhua ZHAO, Xinli ZHANG, Wenling ZHANG. Functions and mechanisms of long non-coding RNAs in lung cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2013, 40(23): 1473-1476. doi: 10.3969/j.issn.1000-8179.20130372

长链非编码RNA在肺癌中的功能及机制研究

doi: 10.3969/j.issn.1000-8179.20130372
详细信息
    通讯作者:

    张文玲  zhangwenling73@126.com

Functions and mechanisms of long non-coding RNAs in lung cancer

More Information
  • 摘要: 长链非编码RNA(long non-coding RNA,lncRNA)是一类转录本长度超过200个核苷酸的非编码RNA1,因缺乏完整的开放阅读框而不能编码任何蛋白质。在人类基因组中,lncRNA在表观遗传学调控、转录调控与转录后调控等方面发挥着重要作用,已成为继microRNA之后的又一研究热点。lncRNA在肿瘤中的异常表达常发挥不同的生物学作用,表现为癌基因或抑癌基因的特点,可促进或抑制肿瘤的生长。肺癌是一种常见的恶性肿瘤,5年生存率只有17%。本研究通过文献发现lncRNA MALAT1、H19、lincRNA p21、UCA1、BC200与肺癌的发生发展有密切关系,可促进肺癌生长、侵袭转移、细胞凋亡和诱导药物抵抗等。因此本文就上述五种lncRNA在肺癌中的功能及机制进行综述,旨在为肺癌的临床诊断、治疗及预后提供帮助。

     

  • [1] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4): 629-641. doi: 10.1016/j.cell.2009.02.006
    [2] Pan YF, Feng L, Zhang XQ, et al. Role of long non-coding RNAs in gene regulation and oncogenesis[J]. Chin Med J (Engl), 2011, 124 (15): 2378-2383.
    [3] Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation[J]. J Cell Biochem, 2012, 113(6): 1868-1874. doi: 10.1002/jcb.24055
    [4] Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291): 1071-1076. doi: 10.1038/nature08975
    [5] Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis[J]. Nat Rev Genet, 2011, 12(2): 136-149. doi: 10.1038/nrg2904
    [6] Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90. doi: 10.3322/caac.20107
    [7] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1): 11-30. doi: 10.3322/caac.21166
    [8] Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer[J]. Oncogene, 2003, 22(39): 8031-8041. doi: 10.1038/sj.onc.1206928
    [9] Barsyte-Lovejoy D, Lau SK, Boutros PC, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis[J]. Cancer Res, 2006, 66(10): 5330-5337. doi: 10.1158/0008-5472.CAN-06-0037
    [10] Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response[J]. Cell, 2010, 142(3): 409-419. doi: 10.1016/j.cell.2010.06.040
    [11] Tano K, Akimitsu N. Long non-coding RNAs in cancer progression [J]. Front Genet, 2012, 3: 219.
    [12] Schmidt LH, Spieker T, Koschmieder S, et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth[J]. J Thorac Oncol, 2011, 6(12): 1984-1992. doi: 10.1097/JTO.0b013e3182307eac
    [13] Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development[J]. Bioessays, 2010, 32(6): 473-480. doi: 10.1002/bies.200900170
    [14] Farnebo M, Bykov VJ, Wiman KG. The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer[J]. Biochem Biophys Res Commun, 2010, 396(1): 85-89. doi: 10.1016/j.bbrc.2010.02.152
    [15] Colnot S, Niwa-Kawakita M, Hamard G, et al. Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers[J]. Lab Invest, 2004, 84(12): 1619-1630. doi: 10.1038/labinvest.3700180
    [16] Wang XS, Zhang Z, Wang HC, et al. Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma[J]. Clin Cancer Res, 2006, 12(16): 4851-4858. doi: 10.1158/1078-0432.CCR-06-0134
    [17] Zhang Z, Hao H, Zhang CJ, et al. Evaluation of novel gene UCA1 as a tumor biomarker for the detection of bladder cancer[J]. Zhonghua Yi Xue Za Zhi, 2012, 92(6): 384-387.
    [18] Wang F, Li X, Xie X, et al. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion[J]. FEBS Lett, 2008, 582(13): 1919-1927. doi: 10.1016/j.febslet.2008.05.012
    [19] Xie XJ, Li X, Wang F, et al. Cellular localization and tissue expression pattern of UCA1, a non-coding RNA[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2010, 30(1): 57-60.
    [20] Tsang WP, Wong TW, Cheung AH, et al. Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR[J]. RNA, 2007, 13(6): 890-898. doi: 10.1261/rna.359007
    [21] Chen W, Böcker W, Brosius J, et al. Expression of neural BC200 RNA in human tumours[J]. J Pathol, 1997, 183(3): 345-351. doi: 10.1002/(SICI)1096-9896(199711)183:3<345::AID-PATH930>3.0.CO;2-8
    [22] Iacoangeli A, Lin Y, Morley EJ, et al. BC200 RNA in invasive and preinvasive breast cancer[J]. Carcinogenesis, 2004, 25(11): 2125-2133. doi: 10.1093/carcin/bgh228
    [23] Hutchinson JN, Ensminger AW, Clemson CM, et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains[J]. BMC Genomics, 2007, 8: 39. doi: 10.1186/1471-2164-8-39
    [24] Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation[J]. Mol Cell, 2010, 39(6): 925-938. doi: 10.1016/j.molcel.2010.08.011
    [25] Yang L, Lin C, Liu W, et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs[J]. Cell, 2011, 147(4): 773-788. doi: 10.1016/j.cell.2011.08.054
    [26] Kohda M, Hoshiya H, Katoh M, et al. Frequent loss of imprinting of IGF2 and MEST in lung adenocarcinoma[J]. Mol Carcinog, 2001, 31 (4): 184-191. doi: 10.1002/mc.1053
    [27] Yang C, Li X, Wang Y, et al. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells[J]. Gene, 2012, 496(1): 8-16. doi: 10.1016/j.gene.2012.01.012
  • 加载中
计量
  • 文章访问数:  37
  • HTML全文浏览量:  33
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-08
  • 修回日期:  2013-05-29
  • 刊出日期:  2013-09-10

目录

    /

    返回文章
    返回