肾癌干细胞与表观遗传学调控研究进展

宋雷 郭忠 杨世英 赵晋

宋雷, 郭忠, 杨世英, 赵晋. 肾癌干细胞与表观遗传学调控研究进展[J]. 中国肿瘤临床, 2013, 40(23): 1477-1480. doi: 10.3969/j.issn.1000-8179.20131180
引用本文: 宋雷, 郭忠, 杨世英, 赵晋. 肾癌干细胞与表观遗传学调控研究进展[J]. 中国肿瘤临床, 2013, 40(23): 1477-1480. doi: 10.3969/j.issn.1000-8179.20131180
Lei SONG, Zhong GUO, Shiying YANG, Jin ZHAO. Kidney cancer stem cells and epigenetic regulation[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2013, 40(23): 1477-1480. doi: 10.3969/j.issn.1000-8179.20131180
Citation: Lei SONG, Zhong GUO, Shiying YANG, Jin ZHAO. Kidney cancer stem cells and epigenetic regulation[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2013, 40(23): 1477-1480. doi: 10.3969/j.issn.1000-8179.20131180

肾癌干细胞与表观遗传学调控研究进展

doi: 10.3969/j.issn.1000-8179.20131180
基金项目: 

国家自然科学基金项目 81000961

国家自然科学基金项目 81260442

详细信息
    通讯作者:

    赵晋  gz6768@163.com

Kidney cancer stem cells and epigenetic regulation

Funds: 

the National Natural Science Foundation of China 81000961

the National Natural Science Foundation of China 81260442

More Information
  • 摘要: 针对肿瘤干细胞进行靶向治疗是遏止肿瘤复发和转移的关键。表观遗传学在干细胞发育及体细胞重编程中的重要作用提示其可能在肿瘤干细胞的发生发展中发挥作用。表观基因组包含DNA甲基化、组蛋白修饰、染色体重塑和非编码RNA调控的基因表达模式,在肾癌细胞中有多种表观基因组的异常改变。目前已成功的从肾细胞癌中获得SP细胞、细胞囊球和CD105+细胞等具肿瘤干细胞属性的细胞亚群。随着对肾细胞癌(renal cell carcinoma,RCC)遗传研究的不断深入,发现DNA序列以外的调控机制异常在肿瘤的发生发展过程中起重要的作用。对肾癌发生相关的表观遗传学的认识有助于推进新的治疗方式,而对发现新的预后和早期诊断标志将起更重要的作用。本文对目前肾癌干细胞和表观遗传学相关领域的最新研究,特别是肾癌干细胞发生和发展过程中表观遗传学可能的调控作用及机制进行综述。

     

  • 表  1  人类肾癌中已鉴定的CSCs亚群的体内和体外属性

    Table  1.   In vitro and in vivo properties of different CSC populations identified in human renal carcinoma

  • [1] Lee JT. Epigenetic regulation by long noncoding RNAs[J]. Science, 2012, 338(6113): 1435-1439. doi: 10.1126/science.1231776
    [2] Yu G, Li H, Wang X, et al. MicroRNA-19a targets tissue factor to inhibit colon cancer cells migration and invasion[J]. Mol Cell Biochem, 2013, 380(1-2): 239-247. doi: 10.1007/s11010-013-1679-6
    [3] Taguchi YH. MicroRNA-mediated regulation of target genes in several brain regions is correlated to both microRNA-targeting-specific promoter methylation and differential microRNA expression[J]. BioData Min, 2013, 6(1): 11. doi: 10.1186/1756-0381-6-11
    [4] Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes[J]. Hepatology, 2010, 51(3): 881-890.
    [5] Bao B, Ali S, Banerjee S, et al. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression[J]. Cancer Res, 2012, 72(1): 335-345. doi: 10.1158/0008-5472.CAN-11-2182
    [6] Li Q, O'Malley ME, Bartlett DL, et al. Homeobox gene Rhox5 is regulated by epigenetic mechanisms in cancer and stem cells and promotes cancer growth[J]. Mol Cancer, 2011, 10: 63. doi: 10.1186/1476-4598-10-63
    [7] Sun L, Mathews LA, Cabarcas SM, et al. Epigenetic regulation of SOX9 by the NF-κB signaling pathway in pancreatic cancer stem cells[J]. Stem Cells, 2013, 31(8): 1454-1466. doi: 10.1002/stem.1394
    [8] Vasudev NS, Selby PJ, Banks RE. Renal cancer biomarkers: the promise of personalized care[J]. BMC Med, 2012, 10: 112. doi: 10.1186/1741-7015-10-112
    [9] Moore LE, Nickerson ML, Brennan P, et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors[J]. PLoS Genet, 2011, 7(10): e1002312. doi: 10.1371/journal.pgen.1002312
    [10] Morris MR, Gentle D, Abdulrahman M, et al. Functional epigenomics approach to identify methylated candidate tumour suppressor genes in renal cell carcinoma[J]. Br J Cancer, 2008, 98(2): 496-501. doi: 10.1038/sj.bjc.6604180
    [11] Yu Z, Ni L, Chen D, et al. Identification of miR-7 as an oncogene in renal cell carcinoma[J]. J Mol Histol, 2013[Epub ahead of print].
    [12] Sato A, Asano T, Ito K, et al. Suberoylanilide hydroxamic acid (SAHA) combined with bortezomib inhibits renal cancer growth by enhancing histone acetylation and protein ubiquitination synergistically[J]. BJU Int, 2012, 109(8): 1258-1268. doi: 10.1111/j.1464-410X.2011.10533.x
    [13] Qiao HP, Gao WS, Huo JX, et al. Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma[J]. Asian Pac J Cancer Prev, 2013, 14(2): 1077-1082. doi: 10.7314/APJCP.2013.14.2.1077
    [14] Azzi S, Bruno S, Giron-Michel J, et al. Differentiation therapy: targeting human renal cancer stem cells with interleukin 15[J]. J Natl Cancer Inst, 2011, 103(24): 1884-1898. doi: 10.1093/jnci/djr451
    [15] Bander NH, Finstad CL, Cordon-Cardo C, et al. Analysis of a mouse monoclonal antibody that reacts with a specific region of the human proximal tubule and subsets renal cell carcinomas[J]. Cancer Res, 1989, 49(23): 6774-6780.
    [16] Gomella LG, Sargent ER, Wade TP, et al. Expression of transforming growth factor alpha in normal human adult kidney and enhanced expression of transforming growth factors alpha and beta 1 in renal cell carcinoma[J]. Cancer Res, 1989, 49(24 Pt 1): 6972-6975.
    [17] Al-Awqati Q, Oliver JA. Stem cells in the kidney[J]. Kidney Int, 2002, 61(2): 387-395. doi: 10.1046/j.1523-1755.2002.00164.x
    [18] Duan JJ, Qiu W, Xu SL, et al. Strategies for isolating and enriching cancer stem cells: well begun is half done[J]. Stem Cells Dev, 2013, 22(16): 2221-2239. doi: 10.1089/scd.2012.0613
    [19] Addla SK, Brown MD, Hart CA, et al. Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells[J]. Am J Physiol Renal Physiol, 2008, 295(3): F680-687. doi: 10.1152/ajprenal.90286.2008
    [20] Zhong Y, Guan K, Guo S, et al. Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are enriched in cancer stem cells[J]. Cancer Lett, 2010, 299(2): 150-160. doi: 10.1016/j.canlet.2010.08.013
    [21] Bruno S, Bussolati B, Grange C, et al. CD133+ renal progenitor cells contribute to tumor angiogenesis[J]. Am J Pathol, 2006, 169(6): 2223-2235. doi: 10.2353/ajpath.2006.060498
    [22] Valladares Ayerbes M, Aparicio Gallego G, Díaz Prado S, et al. Origin of renal cell carcinomas[J]. Clin Transl Oncol, 2008, 10(11): 697-712. doi: 10.1007/s12094-008-0276-8
    [23] Bussolati B, Dekel B, Azzarone B, et al. Human renal cancer stem cells[J]. Cancer Lett, 2013, 338(1): 141-146. doi: 10.1016/j.canlet.2012.05.007
    [24] Bussolati B, Bruno S, Grange C, et al. Identification of a tumor-initiating stem cell population in human renal carcinomas[J]. FASEB J, 2008, 22(10): 3696-3705. doi: 10.1096/fj.08-102590
    [25] Grange C, Tapparo M, Collino F, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche[J]. Cancer Res, 2011, 71(15): 5346-5356. doi: 10.1158/0008-5472.CAN-11-0241
    [26] Hageman J, Rujano MA, van Waarde MA, et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation[J]. Mol Cell, 2010, 37(3): 355-369. doi: 10.1016/j.molcel.2010.01.001
    [27] Nishizawa S, Hirohashi Y, Torigoe T, et al. HSP DNAJB8 controls tumor-initiating ability in renal cancer stem-like cells[J]. Cancer Res, 2012, 72(11): 2844-2854. doi: 10.1158/0008-5472.CAN-11-3062
    [28] Gassenmaier M, Chen D, Buchner A, et al. CXC chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis[J]. Stem Cells, 2013, 31(8): 1467-1476. doi: 10.1002/stem.1407
  • 加载中
表(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-24
  • 修回日期:  2013-11-16

目录

    /

    返回文章
    返回