DNA甲基化靶向药物在急性髓系白血病中的应用

常乃柏

常乃柏. DNA甲基化靶向药物在急性髓系白血病中的应用[J]. 中国肿瘤临床, 2017, 44(2): 64-67. doi: 10.3969/j.issn.1000-8179.2017.02.268
引用本文: 常乃柏. DNA甲基化靶向药物在急性髓系白血病中的应用[J]. 中国肿瘤临床, 2017, 44(2): 64-67. doi: 10.3969/j.issn.1000-8179.2017.02.268
CHANG Naibai. Targeting DNA methylation in the treatment of acute myeloid leukemia[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2017, 44(2): 64-67. doi: 10.3969/j.issn.1000-8179.2017.02.268
Citation: CHANG Naibai. Targeting DNA methylation in the treatment of acute myeloid leukemia[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2017, 44(2): 64-67. doi: 10.3969/j.issn.1000-8179.2017.02.268

DNA甲基化靶向药物在急性髓系白血病中的应用

doi: 10.3969/j.issn.1000-8179.2017.02.268
基金项目: 

本文课题受首都医学发展科研专项 2016-1-4052

详细信息
    通讯作者:

    常乃柏,教授,主任医师,硕士研究生导师。现任中国药理学会化疗药理专业委员会委。兼任《白血病·淋巴瘤》编委,《PLoS ONE》、《中国医学科学院学报》、《中华临床医师杂志》等期刊审稿人。研究方向主要为老年血液肿瘤的治疗以及髓系肿瘤相关基因表达和DNA甲基化研究。先后承担国家及省部级课题8项、局级课题2项,参编专著3部、研究生教材2部,在国内外期刊发表论文70余篇。changnaibai@sohu.com

Targeting DNA methylation in the treatment of acute myeloid leukemia

Funds: 

This work was supported by the Project for the Advances of the Capital Medical Science 2016-1-4052

More Information
  • 摘要: DNA甲基化和组蛋白甲基化是急性髓系白血病(acute myeloid leukemia,AML)表观遗传学调控的常见模式,针对甲基化过程的靶向治疗包括DNA甲基转移酶抑制剂、甲基化调节蛋白抑制剂及组蛋白甲基化调控蛋白抑制剂,其中DNA甲基转移酶(DNA methyltransferase,DNMT)抑制剂阿扎胞苷、地西他滨已上市进入临床,针对甲基化调节蛋白IDH1/2抑制剂也已进入Ⅱ期临床研究。此外,针对组蛋白甲基化调控蛋白EZH2、LSD1抑制剂也显示出良好体外抗白血病活性,部分已进入Ⅰ期临床研究,为AML的治疗提供新的选择。

     

  • [1] Figueroa ME, Lugthart S, Li Y, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia[J]. Cancer Cell, 2010, 17(1):13-27. doi: 10.1016/j.ccr.2009.11.020
    [2] Kohli RM, Zhang Y. TET enzyme, TDG and dynamics of DNA demethylation[J]. Nature, 2013, 502(7432):472-479.
    [3] 常乃柏.急性髓系白血病DNA甲基化及治疗进展[J].中华临床医师杂志(电子版), 2013, 7(12):5504-5506. http://www.cnki.com.cn/Article/CJFDTOTAL-ZLYD201312073.htm

    Chang NB. Recent advances in DNA methylation and treatment in patients with acute myeloidleukemia[J]. Chin J Clinicians (Electronic edition), 2013, 7(12):5504-5506. http://www.cnki.com.cn/Article/CJFDTOTAL-ZLYD201312073.htm
    [4] Cashen AF, Schiller GJ, O'Donnell MR, et al. Multiceter, phase Ⅱ study of decitabine for the first line treatment of older patients with acute myeloid leukemia[J]. J Clin Oncol, 2010, 28(4):556-561. doi: 10.1200/JCO.2009.23.9178
    [5] Kantarjian HM, Thomas XG, Dmoszyska A, et al. Multicenter, randomized, open-lebel, phase Ⅲ trial of decitabine versus patients choice, with physician advice, of either supportive care or low dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia[J]. J Clin Oncol, 2012, 30(21):2670-2677. doi: 10.1200/JCO.2011.38.9429
    [6] Blum W, Garzon R, Klisovic RB, et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine[J]. Proc Natl Acad Sci USA, 2010, 107(16):7473-7479. doi: 10.1073/pnas.1002650107
    [7] Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia[J]. J Clin Oncol, 2010, 28(4):562-569. doi: 10.1200/JCO.2009.23.8329
    [8] Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs. conventional care regimens in older patients with newly diagnosed AML with >30% blasts[J]. Blood, 2015, 126(3):291-299. doi: 10.1182/blood-2015-01-621664
    [9] Onda K, Suzuki R, Tanaka S, et al. Decitabine, a DNA methyltransferase inhabitor, induces P-glycoprotein mRNA and protein expressions and increases drug sensitivity in drug-resistance MOLT4 and Jurkat cell lines [J]. Anticancer Res, 2012, 32(10):4439-4444.
    [10] Jerez A, Sugimoto Y, Makeshima H, et al. Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis[J]. Blood, 2012, 119(25):6109-6117. doi: 10.1182/blood-2011-12-397620
    [11] Jiang Y, Dunbar A, Gondek LP, et al. Aberrant DNA methylations is a dominant mechanism in MDS progression to AML[J]. Blood, 2009, 113 (6):1315-1325. doi: 10.1182/blood-2008-06-163246
    [12] Cabrero M, Jabbour E, Ravandi F, et al. Discontinuation of hypomethylating agent therapy in patients with myelodisplastic syndromes or acute myelogenous leukemia in complete remission or partial response: retrospective analysis of survival after long-term follow-up[J]. Leuk Res, 2015, 39(5):520-524. doi: 10.1016/j.leukres.2015.03.006
    [13] Ørskov AD, Treppendahl MB, Skovbo A, et al. Hypomethylation and upregulation of PD-1 in T cells by azacitidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation[J]. Oncotarget, 2015, 6(11):9612-9626. doi: 10.18632/oncotarget
    [14] Yun S, Vincelette ND, Abraham I, et al. Targeting epigenetic pathways in acute myeloid leukemia and myelodysplastic syndrome: a systemic review of hypomethylaing agents trials[J]. Clin Epigenetics, 2016, 8(3): 68-77. doi: 10.1056/NEJM199909303411407?query=prevarrow
    [15] Scandura JM, Roboz GJ, Moh M, et al. Phase Ⅰ study of epigenetic priming with decitabine prior to standard induction chemotherapy for patients with AML[J]. Blood, 2011, 118(6):1472-1480. doi: 10.1182/blood-2010-11-320093
    [16] Dinardo CD, Patel KP, Garcia-Manero G, et al. Lack of association of IDH1, IDH2, and DNMT3A mutations with outcomes in older patients with AML treated with hypomethylating agents[J]. Leuk Lymphoma, 2014, 55(8):1925-1929. doi: 10.3109/10428194.2013.855309
    [17] Metzeler KH, Walker A, Geyer S, et al. DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia[J]. Leukemia, 2012, 26(5):1106-1107. doi: 10.1038/leu.2011.342
    [18] Stein EM, Altman JK, Collins R, et al. AG-221, an oral, selective, first-inclass, potent inhibitor of the IDH2 mutant metabolic enzyme, induces durable remissions in a phase Ⅰ study in patients with IDH2 mutation positive advanced hematologic malignancies[J]. Blood, 2014, 124(21): 115.
    [19] Stein EM, DiNardo C, Altman JK, et al. Safety and efficacy of AG-221, a potent inhibitor of mutant IDH2 that promote differentiation of myeloid cells in patients with advanced hematological malignancies: results of a phase Ⅰ/Ⅱ trial[J]. Blood, 2015, 126(21):323.
    [20] DiNardo C, de Botton S, Pollyea DA, et al. Molecular profile and relationship with clinical response in patients with IDH1 mutation-positive hematologic malignancies receiving AG-120, a first-in-class potent inhibitor of mutant IDH1, in addition to data from the completed dose escalation portion of the phase 1 study[J]. Blood, 2015, 126(21):1306.
    [21] Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylation in the human genome[J]. Cell, 2007, 129(4):823-837. doi: 10.1016/j.cell.2007.05.009
    [22] Girard N, Bazille C, Lhuissier E, et al. 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells[J]. PLoS ONE, 2014, 9: e98176. doi: 10.1371/journal.pone.0098176
    [23] Bernt KM, Zhu N, Sinha AU, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L[J]. Cancer Cell, 2011, 20(1):66-78. doi: 10.1016/j.ccr.2011.06.010
    [24] Stein EM, Garcia-Manero G, Rizzieri DA, et al. The DOT1L inhibitor EPZ-5676: safety and activity in relapsed/refractory patients with MLLrearranged leukemia[J]. Blood, 2014, 124(21):387. http://www.bloodjournal.org/content/124/21/387?sso-checked=true
    [25] Harris WJ, Huang X, Lynch JT, et al. Pharmacological inhibition or genetic knockdown of Kdm1a (Lsd1 or Aof2) induces differentiation of MLL acute myeloid leukemia stem cells[J]. Blood, 2011, 118(1):28-29. doi: 10.1182/blood-2010-10-313908
  • 加载中
计量
  • 文章访问数:  63
  • HTML全文浏览量:  3
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-03
  • 修回日期:  2016-12-14
  • 刊出日期:  2017-01-30

目录

    /

    返回文章
    返回