TIAM1在儿童神经母细胞瘤中的研究进展

邱艳丽 赵强

邱艳丽, 赵强. TIAM1在儿童神经母细胞瘤中的研究进展[J]. 中国肿瘤临床, 2017, 44(22): 1160-1164. doi: 10.3969/j.issn.1000-8179.2017.22.032
引用本文: 邱艳丽, 赵强. TIAM1在儿童神经母细胞瘤中的研究进展[J]. 中国肿瘤临床, 2017, 44(22): 1160-1164. doi: 10.3969/j.issn.1000-8179.2017.22.032
QIU Yanli, ZHAO Qiang. Research progress on TIAM1 in pediatric neuroblastoma[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2017, 44(22): 1160-1164. doi: 10.3969/j.issn.1000-8179.2017.22.032
Citation: QIU Yanli, ZHAO Qiang. Research progress on TIAM1 in pediatric neuroblastoma[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2017, 44(22): 1160-1164. doi: 10.3969/j.issn.1000-8179.2017.22.032

TIAM1在儿童神经母细胞瘤中的研究进展

doi: 10.3969/j.issn.1000-8179.2017.22.032
详细信息
    作者简介:

    邱艳丽  专业方向为儿童恶性实体瘤的分子诊断。E-mail:qyl0611@126.com

    通讯作者:

    赵强  qiangzhao169@sina.com

Research progress on TIAM1 in pediatric neuroblastoma

More Information
  • 摘要: 随着分子诊断技术的不断发展,精准治疗已进入恶性肿瘤的治疗范畴,靶向治疗是近年来较为热门的研究方向。神经母细胞瘤(neuroblastoma,NB)是儿童期最常见的颅外实体瘤。研究表明,很多基因参与NB的发生发展过程,T淋巴瘤侵袭转移诱导因子1(T lymphoma invasion and metastasis inducing factor 1,TIAM1)是其中之一。TIAM1主要与下游的RAC1(Ras-related C3 botu?linum toxin substrate 1)结合,作用于TrkA/TIAM1/RAC1通路,激活下游相关因子,参与调节神经元轴突的分化过程。因此,深入的研究和实验或许可以更透彻的阐明具体的机制,为NB未来的诊疗提供一个新的方向。

     

  • 图  1  TrkA/TIAM1/RAC1和P75NG-FR/RhoA信号通路示意图

    Figure  1.  Schematic of TrkA/TIAM1/RAC1 and P75NGFR/RhoA signaling pathways

    表  1  TIAM1主要结构域的基本功能及信号通路

    Table  1.   The basic functions and signaling pathways of the main domain of the TIAM1

  • [1] Coughlan D, Gianferante M, Lynch CF, et al. Treatment and survival of childhood neuroblastoma: evidence from a population-based study in the United States[J]. Pediatr Hematol Oncol, 2017:1-11.
    [2] He J, Zou Y, Wang T, et al. Genetic variations of GWAS-identified genes and neuroblastoma susceptibility: a replication study in southern Chinese children[J]. Transl Oncol, 2017, 10(6):936-941. doi: 10.1016/j.tranon.2017.09.008
    [3] Li Z, Yu X, Wang Y, et al. By downregulating TIAM1 expression, microRNA-329 suppresses gastric cancer invasion and growth[J]. Oncotarget, 2015, 6(19):17559-17569. doi: 10.18632/oncotarget.v6i19
    [4] Chen G, Lu L, Liu C, et al. MicroRNA-377 suppresses cell proliferation and invasion by inhibiting TIAM1 expression in hepatocellular carcinoma[J]. PLoS One, 2015, 10(3):e0117714. doi: 10.1371/journal.pone.0117714
    [5] Engers R, Mueller M, Walter A, et al. Prognostic relevance of Tiam1 protein expression in prostate carcinomas[J]. Br J Cancer, 2006, 95 (8):1081-1086. doi: 10.1038/sj.bjc.6603385
    [6] Guo X, Wang M, Zhao Y, et al. Par3 regulates invasion of pancreatic cancer cells via interaction with Tiam1[J]. Clin Exp Med, 2016, 16 (3):357-365. doi: 10.1007/s10238-015-0365-2
    [7] Li Z, Liu Q, Piao J, et al. Clinicopathological implications of Tiam1 overexpression in invasive ductal carcinoma of the breast[J]. BMC Cancer, 2016, 16(1):681. doi: 10.1186/s12885-016-2724-0
    [8] Wang S, Li S, Tang Q, et al. Overexpression of Tiam1 promotes the progression of laryngeal squamous cell carcinoma[J]. Oncol Rep, 2015, 33(4):1807-1814. doi: 10.3892/or.2015.3785
    [9] Liu S, Li Y, Qi W, et al. Expression of Tiam1 predicts lymph node metastasis and poor survival of lung adenocarcinoma patients[J]. Diagn Pathol, 2014, (9):69. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973616/
    [10] Li H, Cui X, Chen D, et al. Clinical implication of Tiam1 overexpression in the prognosis of patients with serous ovarian carcinoma[J]. Oncol Lett, 2016, 12(5):3492-3498. doi: 10.3892/ol.2016.5091/download
    [11] Habets GG, Ra VDK, Jenkins NA, et al. The invasion-inducing TIAM1 gene maps to human chromosome band 21q22 and mouse chromosome 16[J]. Cytogene Geno Res, 2008, 70(1-2):48-51. https://content.karger.com/Article/Abstract/133989
    [12] Xu Z, Gakhar L, Bain FE, et al. The Tiam1 guanine nucleotide exchange factor is auto-inhibited by its pleckstrin homology coiledcoil extension domain[J]. 2017, 292(43):17777-17793.
    [13] Yoo S, Kim Y, Lee H, et al. A gene trap knockout of the Tiam-1 protein results in malformation of the early embryonic brain[J]. Mole Cells, 2012, 34(1):103-108. doi: 10.1007/s10059-012-0119-x
    [14] Boissier P, Huynhdo U. The guanine nucleotide exchange factor Tiam1: a janus-faced molecule in cellular signaling[J]. Cellular Signalling, 2014, 26(3):483-491. doi: 10.1016/j.cellsig.2013.11.034
    [15] Xu Z, Gakhar L, Bain FE, et al. The Tiam1 guanine nucleotide exchange factor is auto-inhibited by its pleckstrin homology coiledcoil extension domain[J]. 2017. [Epub ahead of print].
    [16] Stam JC, Sander EE, Michiels F, et al. Targeting of Tiam1 to the plasma membrane requires the cooperative function of the N-terminal pleckstrin homology domain and an adjacent protein interaction domain[J]. J Biol Chem, 1997, 272(45):28447-28454. doi: 10.1074/jbc.272.45.28447
    [17] Crompton AM, Foley LH, Wood A, et al. Regulation of Tiam1 nucleotide exchange activity by pleckstrin domain binding ligands[J]. J Biol Chem, 2000, 275(33):25751-25759. doi: 10.1074/jbc.M002050200
    [18] Worthylake DK, Rossman KL, Sondek J. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1[J]. Nature, 2000, 408(6813):682-688. doi: 10.1038/35047014
    [19] Shepherd TR, Klaus SM, Liu X, et al. The Tiam1 PDZ domain couples to Syndecan1 and promotes cell-matrix adhesion[J]. J Mol Biol, 2010, 398(5):730-746. doi: 10.1016/j.jmb.2010.03.047
    [20] Fard SS, Kele J, Vilar M, et al. Tiam1 as a signaling mediator of nerve growth factor-dependent neurite outgrowth[J]. PLoS One, 2010, 5 (3):e9647. doi: 10.1371/journal.pone.0009647
    [21] Kawauchi T, Chihama K, Nabeshima Y, et al. The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration[J]. Embo J, 2003, 22(16):4190-4201. doi: 10.1093/emboj/cdg413
    [22] Zhang H, Macara IG. The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis[J]. Nat Cell Biol, 2006, 8(3): 227-237. doi: 10.1038/ncb1368
    [23] Tolias KF, Bikoff JB, Burette A, et al. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines[J]. Neuron, 2005, 45(4):525-538. doi: 10.1016/j.neuron.2005.01.024
    [24] Tolias KF, Bikoff JB, Kane CG, et al. The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development[J]. Proc Natl Acad Sci USA, 2007, 104(17):7265-7270. doi: 10.1073/pnas.0702044104
    [25] Sanmartin E, Yanez Y, Fornes-Ferrer V, et al. TIAM1 variants improve clinical outcome in neuroblastoma[J]. Oncotarget, 2017, 8(28):45286-45297. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5542186/
    [26] Pugh TJ, Morozova O, Attiyeh EF, et al. The genetic landscape of high-risk neuroblastoma[J]. Nat Genet, 2013, 45(3):279-284. doi: 10.1038/ng.2529
    [27] Nishimura T, Yamaguchi T, Kato K, et al. PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1[J]. Nat Cell Bio, 2005, 7(3):270. doi: 10.1038/ncb1227
    [28] Cao Y, Jin Y, Yu J, et al. Clinical evaluation of integrated panel testing by nextgeneration sequencing for somatic mutations in neuroblastomas with MYCN unamplification[J]. Oncotarget, 2017. [Epub ahead of print]. https://www.ncbi.nlm.nih.gov/pubmed/28591696
    [29] Genau HM, Huber J, Baschieri F, et al. CUL3-KBTBD6/KBTBD7Ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1-RAC1 signaling[J]. Molecular Cell, 2015, 57(6):995-1010. doi: 10.1016/j.molcel.2014.12.040
    [30] Ferrero M, Avivar A, Garcíamacías MC, et al. Phosphoinositide 3-kinase/AKT signaling can promote AIB1 stability independently of GSK3 phosphorylation[J]. Cancer Res, 2008, 68(13):5450. doi: 10.1158/0008-5472.CAN-07-6433
    [31] Barbara H, Yania Y, Sarai P, et al. Targeting neuroblastoma stem cells with retinoic acid and proteasome inhibitor[J]. PLoS One, 2013, 8 (10):e76761-e76761. doi: 10.1371/journal.pone.0076761
    [32] Keely PJ, Westwick JK, Whitehead IP, et al. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K[J]. Nature, 1997, 390(6660):632. doi: 10.1038/37656
    [33] Matsuo N, Terao M, Nabeshima Y, et al. Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology[J]. Mol Cell Neurosci, 2003, 24(1):69-81. doi: 10.1016/S1044-7431(03)00122-2
    [34] Leeuwen FN, Kain HE, Kammen RA, et al. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho[J]. J Cell Biol, 1997, 139(3):797-807. doi: 10.1083/jcb.139.3.797
    [35] Yamauchi J, Miyamoto Y, Tanoue A, et al. Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration[J]. Neurosci Res, 2005, 102(41):14889-14894. http://www.ncbi.nlm.nih.gov/pubmed/16203995
    [36] Miyamoto Y, Yamauchi J, Tanoue A, et al. TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology[J]. Proce Nat Acade Sci USA, 2006, 103(27):10444-10449. doi: 10.1073/pnas.0603914103
    [37] Molenaar JJ, Koster J, Zwijnenburg DA, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes[J]. Nat Int Week J Sci, 2012, 483(7391):589-593. http://adsabs.harvard.edu/abs/2012Natur.483..589M
    [38] Speleman F, Park JR, Henderson TO. Neuroblastoma: a tough nut to crack[J]. Am Soci Clin Oncol Edu Book Am Soci Clin Oncol Meet, 2016, (35):e548. https://www.ncbi.nlm.nih.gov/pubmed/27249766?tool=MedlinePlus
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  31
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-08
  • 修回日期:  2017-10-31
  • 刊出日期:  2017-11-30

目录

    /

    返回文章
    返回