绿原酸在脑胶质瘤治疗中的应用前景

杨靖怡 杨守博 康庄 康勋 李文斌

杨靖怡, 杨守博, 康庄, 康勋, 李文斌. 绿原酸在脑胶质瘤治疗中的应用前景[J]. 中国肿瘤临床, 2018, 45(5): 256-259. doi: 10.3969/j.issn.1000-8179.2018.05.271
引用本文: 杨靖怡, 杨守博, 康庄, 康勋, 李文斌. 绿原酸在脑胶质瘤治疗中的应用前景[J]. 中国肿瘤临床, 2018, 45(5): 256-259. doi: 10.3969/j.issn.1000-8179.2018.05.271
Yang Jingyi, Yang Shoubo, Kang Zhuang, Kang Xun, Li Wenbin. The prospect of chlorogenic acid in the treatment of glioma[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2018, 45(5): 256-259. doi: 10.3969/j.issn.1000-8179.2018.05.271
Citation: Yang Jingyi, Yang Shoubo, Kang Zhuang, Kang Xun, Li Wenbin. The prospect of chlorogenic acid in the treatment of glioma[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2018, 45(5): 256-259. doi: 10.3969/j.issn.1000-8179.2018.05.271

绿原酸在脑胶质瘤治疗中的应用前景

doi: 10.3969/j.issn.1000-8179.2018.05.271
基金项目: 

国家科技重大新药创制科技重大专项“十三五”项目 2016ZX09101017

详细信息
    作者简介:

    杨靖怡  专业方向为胶质瘤内科治疗。E-mail:843858697@qq.com

    通讯作者:

    李文斌  neure55@126.com

The prospect of chlorogenic acid in the treatment of glioma

Funds: 

the National Science and Technology Major New Drug Creation Special Projects 2016ZX09101017

More Information
  • 摘要: 恶性神经胶质瘤作为常见的原发性颅内肿瘤,占所有中枢神经系统恶性肿瘤的81%。经手术联合体外放疗、化疗等标准治疗方案后,胶质母细胞瘤(glioblastoma,GBM)患者的生存期仅为14.4个月,传统治疗难以满足患者对生存期及生存质量的要求。近年来,绿原酸(chlorogenic acid,CGA)作为植物提取多酚类物质,其调节免疫系统、抗氧化、调控细胞周期、抑制肿瘤细胞转移和侵袭等多种抗肿瘤作用机制受到广泛关注及深入研究。本文将从绿原酸类物质在胶质瘤治疗领域的作用机制、与其他药物协同以及人体内代谢等相关研究展开总结与讨论,旨在为胶质瘤治疗中绿原酸的应用提供一定参考。

     

  • [1] Dolecek TA, Propp JM, Stroup NE, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009[J]. Neuro Oncol, 2013, 15(5):646-647. doi: 10.1093/neuonc/nos389
    [2] Jiang T, Mao Y, Ma W, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Lett, 2016, 375 (2):263-273. doi: 10.1016/j.canlet.2016.01.024
    [3] Strickland M, Stoll EA. Metabolic Reprogramming in Glioma[J]. Front Cell Dev Biol, 2017, 26(5):43. http://europepmc.org/articles/PMC5405080/
    [4] Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, et al. Advances in Brain Tumor Surgery for Glioblastoma in Adults[J]. Brain Sci, 2017, 7 (12):166 doi: 10.3390/brainsci7120166
    [5] Wang F, Shang Z, Xu L, et al. Profiling and identification of chlorogenic acid metabolites in rats by ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometer[J]. Xenobiotica, 2017, 4:1-13. doi: 10.1080/00498254.2017.1343963
    [6] Naveed M, Hejazi V, Abbas M, et al. Chlorogenic acid (CGA): A phar-macological review and call for further research[J]. Biomed Pharmacother, 2018, 97:67-74. doi: 10.1016/j.biopha.2017.10.064
    [7] 席利莎, 木泰华, 孙红男.绿原酸类物质的国内外研究进展[J].核农学报, 2014, 28(2):292-301. doi: 10.11869/j.issn.100-8551.2014.02.0292
    [8] Kang TY, Yang HR, Zhang J, et al. Corrigendum to "The Studies of Chlorogenic Acid Antitumor Mechanism by Gene Chip Detection: The Immune Pathway Gene Expression"[J]. J Anal Methods Chem, 2015, 2015:538539. http://europepmc.org/articles/PMC4379429/
    [9] Sørensen MD, Dahlrot RH, Boldt HB, et al. Tumor-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumor subtype[J]. Neuropathol Appl Neurobiol, 2018, 44(2):185-206. doi: 10.1111/nan.2018.44.issue-2
    [10] Zhang M, Hutter G, Kahn SA, et al. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo[J]. PloS one, 2016, 11(4):e0153550. doi: 10.1371/journal.pone.0153550
    [11] Dai F, Yu N, Che G, et al. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time[J]. BMC Cancer, 2010, 10(1):112. doi: 10.1186/1471-2407-10-112
    [12] Xue N, Zhou Q, Ji M, et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype[J]. Sci Rep, 2017, 3(7):39011. https://www.ncbi.nlm.nih.gov/pubmed/28045028
    [13] Zheng H, Ying H, Yan H, et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation[J]. Nature, 2008, 455(7216):1129-1133. doi: 10.1038/nature07443
    [14] Beyfuss K, Hood DA. A systematic review of p53 regulation of oxidative stress in skeletal muscle[J]. Redox Rep, 2018, 23(1):100-117. doi: 10.1080/13510002.2017.1416773
    [15] Sitarek P, Skała E, Toma M, et al. A preliminary study of apoptosis induction in glioma cells via alteration of the Bax/Bcl-2-p53 axis by transformed and non-transformed root extracts of Leonurus sibiricus L[J]. Tumor Biol, 2016, 37(7):8753-8764. doi: 10.1007/s13277-015-4714-2
    [16] Belkaid A, Copland IB, Massillon D, et al. Silencing of the human microsomal glucose-6-phosphate translocase induces glioma cell death: Potential new anticancer target for curcumin[J]. FEBS Lett, 2006, 580(15):3746-3752. doi: 10.1016/j.febslet.2006.05.071
    [17] Abbadi S, Rodarte JJ, Abutaleb A, et al. Glucose-6-phosphatase is a key metabolic regulator of glioblastoma invasion[J]. Mol Cancer Res, 2014, 12(11):1547-1559. doi: 10.1158/1541-7786.MCR-14-0106-T
    [18] Fortier S, Labelle D, Sina A, et al. Silencing of the MT1-MMP/ G6PT axis suppresses calcium mobilization by sphingosine-1-phosphate in glioblastoma cells.[J]. FEBS Lett, 2008, 582(5):799-804. doi: 10.1016/j.febslet.2008.01.061
    [19] Thirusangu P, Vigneshwaran V, Ranganatha VL, et al. A tumoural angiogenic gateway blocker, Benzophenone-1B represses the HIF-1α nuclear translocation and its target gene activation against neoplastic progression[J]. Biochem Pharmacol, 2016, 125:26-40. https://www.researchgate.net/publication/309874253_A_tumoural_angiogenic_gateway_blocker_Benzophenone-1B_represses_the_HIF-1a_nuclear_translocation_and_its_target_gene_activation_against_neoplastic_progression
    [20] Park JJ, Hwang SJ, Park JH, et al. Chlorogenic acid inhibits hypoxiainduced angiogenesis via down-regulation of the HIF-1α/AKT pathway[J]. Cell Oncol, 2015, 38(2):111-118. doi: 10.1007/s13402-014-0216-2
    [21] Yang JS, Liu CW, Ma YS, et al. Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase-and mitochondria-dependent pathways[J]. In Vivo, 2012, 26(6):971-978. http://europepmc.org/abstract/MED/23160680
    [22] Deka SJ, Gorai S, Manna D, et al. Evidence of PKC Binding and Translocation to explain the anticancer mechanism of chlorogenic acid in breast cancer cells[J]. Curr Mol Med, 2017, 17(1):79-89. doi: 10.2174/1566524017666170209160619
    [23] Lewandowska H, Kalinowska M, Lewandowski W, et al. The role of natural polyphenols in cell signaling and cytoprotection against cancer development[J]. J Nutr Biochem, 2016, 32:1-19. doi: 10.1016/j.jnutbio.2015.11.006
    [24] Sertel S, Eichhorn T, Sieber S, et al. Factors determining sensitivity or resistance of tumor cell lines towards artesunate[J]. Chem Biol Interact, 2010, 185(1):42-52. doi: 10.1016/j.cbi.2010.02.002
    [25] Catanzaro D, Filippini R, Vianello C, et al. Chlorogenic Acid Interaction with Cisplatin and Oxaliplatin: Studies in Cervical Carcinoma Cells[J]. Nat Prod Commun, 2016, 11(4):499-502. http://www.ncbi.nlm.nih.gov/pubmed/27396204
    [26] Zhang JQ, Yao ZT, Liang GK, et al. Combination of lapatinib with chlorogenic acid inhibits breast cancer metastasis by suppressing macrophage M2 polarization[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2015, 44(5):493-499. http://www.greenmedinfo.com/article/combination-lapatinib-and-chlorogenic-acid-can-effectively-inhibit-macrophage
    [27] Yan Y, Li J, Han J, et al. Chlorogenic acid enhances the effects of 5-fluorouracil in human hepatocellular carcinoma cells through the inhibition of extracellular signal-regulated kinases[J]. Anticancer Drugs, 2015, 26(5):540-546. doi: 10.1097/CAD.0000000000000218
    [28] Stalmach A, Mullen W, Barron D, et al. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: identification of biomarkers of coffee consumption[J]. Drug Metab Dispos, 2009, 37(8):1749-1758. doi: 10.1124/dmd.109.028019
    [29] Renouf M, Marmet C, Giuffrida F, et al. Dose-response plasma appearance of coffee chlorogenic and phenolic acids in adults[J]. Mol Nutr Food Res, 2014, 58(2):301-309. doi: 10.1002/mnfr.v58.2
    [30] Ren T, Wang Y, Wang C, et al. Isolation and identification of human metabolites from a novel anti-tumor candidate drug 5-chlorogenic acid injection by HPLC-HRMS/MSn and HPLC-SPE-NMR[J]. Anal Bioanal Chem, 2017, 409(30):7035-7048. doi: 10.1007/s00216-017-0657-3
  • 加载中
计量
  • 文章访问数:  139
  • HTML全文浏览量:  4
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-01
  • 修回日期:  2018-01-15
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回