胰腺癌微环境治疗策略的进展与思考

卓萌 焦锋 王理伟

卓萌, 焦锋, 王理伟. 胰腺癌微环境治疗策略的进展与思考[J]. 中国肿瘤临床, 2018, 45(6): 271-276. doi: 10.3969/j.issn.1000-8179.2018.06.394
引用本文: 卓萌, 焦锋, 王理伟. 胰腺癌微环境治疗策略的进展与思考[J]. 中国肿瘤临床, 2018, 45(6): 271-276. doi: 10.3969/j.issn.1000-8179.2018.06.394
Zhuo Meng, Jiao Feng, Wang Liwei. Progress and reflection on the therapeutic strategy of targeting the pancreatic cancer microenvironment[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2018, 45(6): 271-276. doi: 10.3969/j.issn.1000-8179.2018.06.394
Citation: Zhuo Meng, Jiao Feng, Wang Liwei. Progress and reflection on the therapeutic strategy of targeting the pancreatic cancer microenvironment[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2018, 45(6): 271-276. doi: 10.3969/j.issn.1000-8179.2018.06.394

胰腺癌微环境治疗策略的进展与思考

doi: 10.3969/j.issn.1000-8179.2018.06.394
详细信息
    作者简介:

    卓萌  专业方向为胰腺癌基础与临床研究。E-mail:doc.zhuo6@163.com

    王理伟教授,博士,主任医师,博士研究生导师,现任上海交通大学医学院附属仁济医院肿瘤科主任、上海交通大学胰腺癌诊治中心主任、上海交通大学医学院肿瘤专科医师培训基地专家组组长。兼任中国临床肿瘤学会胰腺癌专家委员会主任委员、中华医学会肿瘤学分会全国委员、上海市医学会肿瘤专科分会副主任委员。长期从事消化系统肿瘤多学科综合诊治及肿瘤基因组指导下的个体化诊治,在胰腺癌基础和临床研究方面取得了丰硕的成果。牵头多项胰腺癌创新药物多中心临床研究,主持制定了中国首部《胰腺癌综合诊治中国专家共识》。近年来,主持国家自然科学基金重大研究计划1项和面上项目3项,并获得上海市优秀学科带头人、上海市领军人才和浦江人才计划资助。在Cancer Research、Journal of Hematology & Oncology、Gastroenterology、Clinical Cancer Research等肿瘤学期刊发表SCI论文80余篇,他引1 000余次

    通讯作者:

    王理伟   liweiwang@shsmu.edu.cn

Progress and reflection on the therapeutic strategy of targeting the pancreatic cancer microenvironment

More Information
  • 摘要: 胰腺癌恶性程度较高,明显的间质纤维化及肿瘤异质性是胰腺癌的重要特征,也是胰腺癌患者对目前传统化疗应答欠佳、预后极差的重要原因。因此,寻找有效的治疗策略是提高胰腺癌患者生存率的关键问题。鉴于胰腺癌“间质化”及“异质性”的特性,国内外学者致力于阐明肿瘤微环境在胰腺癌发展过程中的作用机制及寻找有效的微环境靶向治疗策略,以提高胰腺癌患者治疗反应率,实现对于胰腺癌患者精准治疗的目的。本文通过对胰腺癌的微环境研究现状及在精准治疗理念下的靶向胰腺癌微环境的最新进展进行概述,为进一步提高胰腺癌患者的生存率提供新思路。

     

  • [1] Faurobert E, Bouin AP, Albiges-Rizo C. Microenvironment, tumor cell plasticity, and cancer[J]. Curr Opin Oncol, 2015, 27(1):64-70. doi: 10.1097/CCO.0000000000000154
    [2] Tomita Y, Azuma K, Nonaka Y, et al. Pancreatic fatty degeneration and fibrosis as predisposing factors for the development of pancreatic ductal adenocarcinoma[J]. Pancreas, 2014, 43(7):1032-1041. doi: 10.1097/MPA.0000000000000159
    [3] Bang UC, Watanabe T, Bendtsen F. The relationship between the use of statins and mortality, severity, and pancreatic cancer in Danish patients with chronic pancreatitis[J]. Eur J Gastroenterol Hepatol, 2018, 30(3):346-351. https://research.regionh.dk/hvidovre/da/publications/the-relationship-between-the-use-of-statins-and-mortality-severity-and-pancreatic-cancer-in-danish-patients-with-chronic-pancreatitis(401b1b67-85fa-4b9b-8313-0a2ecd4eba58).html
    [4] Rashid S, Singh N, Gupta S, et al. Progression of chronic pancreatitis to pancreatic cancer: is there a role of gene mutations as a screening tool[J]. Pancreas, 2018, 47(2):227-232. doi: 10.1097/MPA.0000000000000975
    [5] Feig C, Gopinathan A, Neesse A, et al. The pancreas cancer microenvironment[J]. Clin Cancer Res, 2012, 18(16):4266-4276. doi: 10.1158/1078-0432.CCR-11-3114
    [6] Apte MV, Wilson JS, Lugea A, et al. A starring role for stellate cells in the pancreatic cancer microenvironment[J]. Gastroenterology, 2013, 144(6):1210-1219. doi: 10.1053/j.gastro.2012.11.037
    [7] Bachem MG, Schneider E, Gross H, et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans[J]. Gastroenterology, 1998, 115(2):421-432. doi: 10.1016/S0016-5085(98)70209-4
    [8] Apte M, Pirola RC, Wilson JS. Pancreatic stellate cell: physiologic role, role in fibrosis and cancer[J]. Curr Opin Gastroenterol, 2015, 31(5):416-423. doi: 10.1097/MOG.0000000000000196
    [9] Pang T, Xu Z, Pothula S, et al. Circulating pancreatic stellate (stromal) cells in pancreatic cancer-a fertile area for novel research[J]. Carcinogenesis, 2017, 38(6):588-591. doi: 10.1093/carcin/bgx030
    [10] Ozdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell, 2014, 25(6):719-734. doi: 10.1016/j.ccr.2014.04.005
    [11] Sherman MH, Yu RT, Engle DD, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy[J]. Cell, 2014, 159(1):80-93. doi: 10.1016/j.cell.2014.08.007
    [12] Chronopoulos A, Robinson B, Sarper M, et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion[J]. Nat Commun, 2016, (7):12630.
    [13] Saison-Ridinger M, Delgiorno KE, Zhang T, et al. Reprogramming pancreatic stellate cells via p53 activation: A putative target for pancreatic cancer therapy[J]. PLoS One, 2017, 12(12):e189051. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189051
    [14] Von Hoff DD, Ramanathan RK, Borad MJ, et al. Gemcitabine plus nabpaclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase Ⅰ/Ⅱ trial[J]. J Clin Oncol, 2011, 29(34):4548-4554. doi: 10.1200/JCO.2011.36.5742
    [15] Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine[J]. N Engl J Med, 2013, 369 (18):1691-1703. doi: 10.1056/NEJMoa1304369
    [16] Jacobetz MA, Chan DS, Neesse A, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer[J]. Gut, 2013, 62(1):112-120. doi: 10.1136/gutjnl-2012-302529
    [17] Hingorani SR, Zheng L, Bullock AJ, et al. HALO 202: Randomized phase Ⅱstudy of PEGPH20 plus nab-paclitaxel/gemcitabine versus nabpaclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma[J]. J ClinOncol, 2018, 36(4):359-366. doi: 10.1200/JCO.2017.74.9564
    [18] Habtezion A, Edderkaoui M, Pandol SJ. Macrophages and pancreatic ductal adenocarcinoma[J]. Cancer Lett, 2016, 381(1):211-216. doi: 10.1016/j.canlet.2015.11.049
    [19] Hu H, Hang JJ, Han T, et al. The M2 phenotype of tumor-associated macrophages in the stroma confers a poor prognosis in pancreatic cancer[J]. Tumour Biol, 2016, 37(7):8657-8664. doi: 10.1007/s13277-015-4741-z
    [20] Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models[J]. Cancer Res, 2014, 74(18):5057-5069. doi: 10.1158/0008-5472.CAN-13-3723
    [21] Beatty GL, Torigian DA, Chiorean EG, et al. A phaseⅠstudy of an agonist CD40 monoclonal antibody (CP-870, 893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma [J]. Clin Cancer Res, 2013, 19(22):6286-6295. doi: 10.1158/1078-0432.CCR-13-1320
    [22] Hiroshima Y, Maawy A, Hassanein MK, et al. The tumor-educatedmacrophage increase of malignancy of human pancreatic cancer is prevented by zoledronicacid[J]. PLoS One, 2014, 9(8):e103382. doi: 10.1371/journal.pone.0103382
    [23] Griesmann H, Drexel C, Milosevic N, et al. Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer[J]. Gut, 2017, 66(7):1278-1285. doi: 10.1136/gutjnl-2015-310049
    [24] Pergamo M, Miller G. Myeloid-derived suppressor cells and their role in pancreatic cancer[J]. Cancer Gene Ther, 2017, 24(3):100-105. doi: 10.1038/cgt.2016.65
    [25] Lu T, Ramakrishnan R, Altiok S, et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice[J]. J Clin Invest. 2011, 121(10):4015-4029. doi: 10.1172/JCI45862
    [26] Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1 [J]. J Immunol, 2009, 182(1):240-249. doi: 10.4049/jimmunol.182.1.240
    [27] Porembka MR, Mitchem JB, Belt BA, et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth[J]. Cancer Immunol Immunother, 2012, 61(9):1373-1385. doi: 10.1007/s00262-011-1178-0
    [28] Sanford DE, Porembka MR, Panni RZ, et al. A study of zoledronic acid as neo-adjuvant, perioperative therapy in patients with resectable pancreatic ductal adenocarcinoma[J]. J Cancer Ther, 2013, 4(3):797-803. doi: 10.4236/jct.2013.43096
    [29] Gargett T, Christo S N, Hercus T R, et al. GM-CSF signalling blockade and chemotherapeutic agents act in concert to inhibit the function of myeloid-derived suppressor cells in vitro[J]. Clin Transl Immunol, 2016, 5(12):e119. doi: 10.1038/cti.2016.80
    [30] Linehan DC, Goedegebuure PS. CD25+CD4+regulatory T-cells in cancer [J]. Immunol Res, 2005, 32(1-3):155-168. doi: 10.1385/IR:32:1-3
    [31] de Reuver PR, Mehta S, Gill P, et al. Immunoregulatory forkhead box protein p3-positive lymphocytes are associated with overall survival in patients with pancreatic neuroendocrine tumors[J]. J Am Coll Surg, 2016, 222(3):281-287. doi: 10.1016/j.jamcollsurg.2015.12.008
    [32] Morse MA, Hobeika AC, Osada T, et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines[J]. Blood, 2008, 112(3):610-618. doi: 10.1182/blood-2008-01-135319
    [33] Aida K, Miyakawa R, Suzuki K, et al. Suppression of Tregs by anti-glucocorticoid induced TNF receptor antibody enhances the antitumor immunity of interferon-alpha gene therapy for pancreatic cancer[J]. Cancer Sci, 2014, 105(2):159-167. doi: 10.1111/cas.2014.105.issue-2
    [34] Shevchenko I, Karakhanova S, Soltek S, et al. Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer[J]. Int J Cancer, 2013, 133(1):98-107. doi: 10.1002/ijc.v133.1
    [35] Shibuya KC, Goel VK, Xiong W, et al. Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment[J]. PLoS One, 2014, 9(5): e96565. doi: 10.1371/journal.pone.0096565
    [36] Le DT, Lutz E, Uram JN, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer[J]. J Immunother, 2013, 36(7): 382-389. doi: 10.1097/CJI.0b013e31829fb7a2
    [37] Wang Y, Lin J, Cui J, et al. Prognostic value and clinicopathological features of PD-1/PD-L1 expression with mismatch repair status and desmoplasticstroma in Chinese patients with pancreatic cancer[J]. Oncotarget, 2017, 8(6):9354-9365. https://www.researchgate.net/publication/304300978_Prognostic_value_localization_and_correlation_of_PD-1PD-L1_CD8_and_FOXP3_with_the_desmoplastic_stroma_in_pancreatic_ductal_adenocarcinoma
    [38] Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PDL1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26):2455-2465. doi: 10.1056/NEJMoa1200694
    [39] Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade[J]. Cell, 2017, 170(6):1120-1133. doi: 10.1016/j.cell.2017.07.024
  • 加载中
计量
  • 文章访问数:  116
  • HTML全文浏览量:  92
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-27
  • 修回日期:  2018-03-09
  • 刊出日期:  2018-03-30

目录

    /

    返回文章
    返回