嵌合抗原受体T细胞联合免疫检查点抑制剂治疗恶性肿瘤的研究进展

曹雅青 金鑫 隋松男 赵明峰

曹雅青, 金鑫, 隋松男, 赵明峰. 嵌合抗原受体T细胞联合免疫检查点抑制剂治疗恶性肿瘤的研究进展[J]. 中国肿瘤临床, 2018, 45(9): 472-476. doi: 10.3969/j.issn.1000-8179.2018.09.113
引用本文: 曹雅青, 金鑫, 隋松男, 赵明峰. 嵌合抗原受体T细胞联合免疫检查点抑制剂治疗恶性肿瘤的研究进展[J]. 中国肿瘤临床, 2018, 45(9): 472-476. doi: 10.3969/j.issn.1000-8179.2018.09.113
Cao Yaqing, Jin Xin, Sui Songnan, Zhao Mingfeng. Advances of chimeric antigen receptor T-cell immunotherapy combined with immune checkpoint inhibitors in malignancies therapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2018, 45(9): 472-476. doi: 10.3969/j.issn.1000-8179.2018.09.113
Citation: Cao Yaqing, Jin Xin, Sui Songnan, Zhao Mingfeng. Advances of chimeric antigen receptor T-cell immunotherapy combined with immune checkpoint inhibitors in malignancies therapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2018, 45(9): 472-476. doi: 10.3969/j.issn.1000-8179.2018.09.113

嵌合抗原受体T细胞联合免疫检查点抑制剂治疗恶性肿瘤的研究进展

doi: 10.3969/j.issn.1000-8179.2018.09.113
基金项目: 

天津医科大学一中心临床医学院,天津市第一中心医院血液科 16KG110

详细信息
    作者简介:

    曹雅青  专业方向为血液肿瘤的免疫治疗。E-mail:745651529@qq.com

    通讯作者:

    赵明峰  mingfengzhao@sina.com

Advances of chimeric antigen receptor T-cell immunotherapy combined with immune checkpoint inhibitors in malignancies therapy

Funds: 

Tianjin Key Project of Health and Family Planning Commission Science and Technology Foundation 16KG110

More Information
  • 摘要: 近年来,嵌合抗原受体T细胞(chimeric antigen receptor T-cell,CAR-T)治疗在恶性肿瘤治疗中取得了较多成果,尤其在血液肿瘤治疗方面有所突破,实体瘤治疗研究前景较为广阔,有望成为更多复发难治性肿瘤患者的选择。免疫检查点抑制剂疗法在肿瘤治疗中同样具有疗效,如肝癌、难治性霍奇金淋巴瘤等多种恶性肿瘤,为晚期肿瘤患者带来了希望。但是上述两种治疗方法均存在不同程度的局限性。CAR-T联合免疫检查点抑制剂会削弱肿瘤微环境的免疫抑制作用,提高CAR-T治疗的有效率,延长生存期。本文旨在对CAR-T细胞和免疫检查点抑制剂治疗及二者联合应用的研究进展予以综述。

     

  • 图  1  免疫检查点对T细胞的影响[22]

    Galectin-9:天然型配体半乳糖凝集素9;HMGB1:高迁移率族蛋白1(Galectin-9和HMGB1均为TIM-3的配体);MHC:主要组织相容性复合体;TCR:T细胞受体;APC:抗原提呈细胞;T细胞主要的激活信号由TCR介导,共刺激信号由CD28提供。共刺激信号由PD-1、CTLA-4、LAG-3和TIM-3等抑制性信号调节

  • [1] Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia[J]. N Engl J Med, 2014, 371(16):1507-1517. doi: 10.1056/NEJMoa1407222
    [2] Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-cell lymphoma[J]. New Engl J Med, 2017, 377(26):2531-2544. doi: 10.1056/NEJMoa1707447
    [3] Luo F, Qian J, Yang J, et al. Bifunctional alphaHER2/CD3 RNA-engineered CART-like human T cells specifically eliminate HER2(+) gastric cancer[J]. Cell Res, 2016, 26(7):850-853. doi: 10.1038/cr.2016.81
    [4] Brown CE, Alizadeh D, Starr R, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy[J]. N Engl J Med, 2016, 375(26):2561-2569. doi: 10.1056/NEJMoa1610497
    [5] Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas[J]. Blood, 2018, 131(1):68-83. http://www.ncbi.nlm.nih.gov/pubmed/29118007
    [6] Nghiem PT, Bhatia S, Lipson EJ, et al. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma[J]. N Engl J Med, 2016, 374(26):2542-2552. doi: 10.1056/NEJMoa1603702
    [7] Lim WA, June CH. The principles of engineering immune cells to treat cancer[J]. Cell, 2017, 168(4):724-740. doi: 10.1016/j.cell.2017.01.016
    [8] Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs [J]. Exp Opin Biol Ther, 2015, 15(8):1145-1154. doi: 10.1517/14712598.2015.1046430
    [9] Tashiro H, Sauer T, Shum T, et al. Treatment of acute myeloid leukemia with T cells expressing chimeric antigen receptors directed to c-type lectin-like molecule 1[J]. Mol Ther, 2017, 25(9):2202-2213. doi: 10.1016/j.ymthe.2017.05.024
    [10] Garfall AL, Maus MV, Hwang WT, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma[J]. N Engl J Med, 2015, 373 (11):1040-1047. doi: 10.1056/NEJMoa1504542
    [11] Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma[J]. N Engl J Med, 2017, 377(26):2531-2544. doi: 10.1056/NEJMoa1707447
    [12] Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy[J]. Nat Med, 2017, (24):20. https://www.researchgate.net/publication/321175475_CD22-targeted_CAR_T_cells_induce_remission_in_B-ALL_that_is_naive_or_resistant_to_CD19-targeted_CAR_immunotherapy
    [13] Mikkilineni L, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for multiple myeloma[J]. Blood, 2017, 130(24):2594. doi: 10.1182/blood-2017-06-793869
    [14] Wang J, Chen S, Xiao W, et al. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia[J]. J Hematol Oncol, 2018, 11(1):7. doi: 10.1186/s13045-017-0553-5
    [15] Arcangeli S, Rotiroti MC, Bardelli M, et al. Balance of anti-CD123 chimeric antigen receptor binding affinity and density for the targeting of acute myeloid leukemia[J]. Mol Ther, 2017, 25(8):1933-1945. doi: 10.1016/j.ymthe.2017.04.017
    [16] Guo Y, Feng K, Liu Y, et al. PhaseⅠstudy of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers[J]. Clin Cancer Res, 2018, 24(6):1277. doi: 10.1158/1078-0432.CCR-17-0432
    [17] Tchou J, Zhao Y, Levine BL, et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer[J]. Cancer Immunol Res, 2017, 5(12):1152-1161. doi: 10.1158/2326-6066.CIR-17-0189
    [18] Migliorini D, Dietrich PY, Stupp R, et al. CAR T-Cell therapies in glioblastoma: a first look[J]. Clin Cancer Res, 2018, 24(3):535. doi: 10.1158/1078-0432.CCR-17-2871
    [19] Newick K, O'Brien S, Moon E, et al. CAR T cell therapy for solid tumors[J]. Annu Rev Med, 2017, (68):139-152. http://www.ncbi.nlm.nih.gov/pubmed/27860544
    [20] Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion[J]. Sci, 2011, 331(6024):1565-1570. doi: 10.1126/science.1203486
    [21] Dunn GP, Old LJ, Schreiber RD. The Immunobiology of cancer immunosurveillance and immunoediting[J]. Immunity, 2004, 21(2):137-148. doi: 10.1016/j.immuni.2004.07.017
    [22] Ok CY, Yong KH. Checkpoint inhibitors in hematological malignancies[J]. J Hematol Oncol, 2017, 10(1):103. doi: 10.1186/s13045-017-0474-3
    [23] Zhu X, Lang J. Programmed death-1 pathway blockade produces a synergistic antitumor effect: combined application in ovarian cancer[J]. J Gynecol Oncol, 2017, 28(5):e64. doi: 10.3802/jgo.2017.28.e64
    [24] Ribas A, Shin DS, Zaretsky J, et al. PD-1 blockade expands intratumoral memory T cells[J]. Cancer Immunol Res, 2016, 4(3):194-203. doi: 10.1158/2326-6066.CIR-15-0210
    [25] Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 Blockade[J]. Sci, 1996, 271(5256):1734-1736. doi: 10.1126/science.271.5256.1734
    [26] Ren Z, Guo J, Liao J, et al. CTLA-4 limits anti-CD20-mediated tumor regression[J]. Clin Cancer Res, 2017, 23(1):193-203. doi: 10.1158/1078-0432.CCR-16-0040
    [27] Merchant MS, Wright M, Baird K, et al. PhaseⅠclinical trial of ipilimumab in pediatric patients with advanced solid tumors[J]. Clin Cancer Res, 2016, 22(6):1364-1370. doi: 10.1158/1078-0432.CCR-15-0491
    [28] Sakamuri D, Glitza IC, Betancourt Cuellar SL, et al. PhaseⅠdose-escalation study of anti-CTLA-4 antibody ipilimumab and lenalidomide in patients with advanced cancers[J]. Mol Cancer Thera, 2018, 17(3): 671. doi: 10.1158/1535-7163.MCT-17-0673
    [29] Zhou G, Sprengers D, Boor PPC, et al. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas[J]. Gastroenter, 2017, 153(4):1107-1119. doi: 10.1053/j.gastro.2017.06.017
    [30] Yang ZZ, Price-troska T, Novak AJ, et al. The exhausted intratumoral T cell population in B-cell non-hodgkin lymphoma is defined by LAG-3, PD-1 andtim-3 expression[J]. Blood, 2015, (126):2661-2661. http://www.bloodjournal.org/content/126/23/2661
    [31] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5):646-674. doi: 10.1016/j.cell.2011.02.013
    [32] Rosenblatt J, Avigan D. Targeting the PD-1/PD-L1 axis in multiple myeloma: a dream or a reality[J]? Blood, 2017, 129(3):275-279. doi: 10.1182/blood-2016-08-731885
    [33] Yeku OO, Purdon TJ, Koneru M, et al. Armored CAR-T cells enhance antitumor efficacy and overcome the tumor microenvironment[J]. Sci Rep, 2017, 7(1):10541. doi: 10.1038/s41598-017-10940-8
    [34] Gargett T, Yu W, Dotti G, et al. GD2-specific CAR-T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade [J]. Mol Ther, 2016, 24(6):1135-1149. doi: 10.1038/mt.2016.63
    [35] Li S, Siriwon N, Zhang X, et al. Enhanced cancer immunotherapy by chimeric antigen receptor–modified T cells engineered to secrete checkpoint inhibitors[J]. Clin Cancer Res, 2017, 23(22):6982-6992. doi: 10.1158/1078-0432.CCR-17-0867
    [36] Chong EA, Melenhorst JJ, Lacey SF, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR [J]. Blood, 2017, 129(8):1039-1041. doi: 10.1182/blood-2016-09-738245
    [37] Chong EA, Melenhorst JJ, Svoboda J, et al. PhaseⅠ/Ⅱstudy of pembrolizumab for progressive diffuse large B cell lymphoma after antiCD19 directed chimeric antigen receptor modified T cell therapy[J]. Blood, 2017, 130(Suppl 1):4121-4121.
    [38] Liu X, Ranganathan R, Jiang S, et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR-T cells in advanced solid tumors[J]. Cancer Res, 2016, 76(6):1578-1590. doi: 10.1158/0008-5472.CAN-15-2524
    [39] Heczey A, Louis CU, Savoldo B, et al. CAR-T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma[J]. Mol Ther, 2017, 25(9):2214-2224. doi: 10.1016/j.ymthe.2017.05.012
    [40] Condomines M, Arnason J, Benjamin R, et al. Tumor-targeted human T cells expressing CD28-based chimeric antigen receptors circumvent CTLA-4 inhibition[J]. PLoS One, 2015, 10(6):e0130518. doi: 10.1371/journal.pone.0130518
    [41] Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas[J]. New Engl J Med, 2017, 377 (26):2545-2554. doi: 10.1056/NEJMoa1708566
    [42] Kenderian SS, Ruella M, Shestova O, et al. Identification of PD1 and TIM3 as checkpoints that limit chimeric antigen receptor T cell efficacy in leukemia[J]. Blood, 2015, 126(23):852-852. http://www.sciencedirect.com/science/article/pii/S1083879115010484
    [43] Beavis PA, Henderson MA, Giuffrida L, et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy [J]. J Clin Invest, 2017, 127(3):929-941. doi: 10.1172/JCI89455
  • 加载中
图(1)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  2
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-27
  • 修回日期:  2018-03-29
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回