粒细胞-巨噬细胞集落刺激因子联合放疗研究进展

张佳奇 赵路军 刘宁波 王平

张佳奇, 赵路军, 刘宁波, 王平. 粒细胞-巨噬细胞集落刺激因子联合放疗研究进展[J]. 中国肿瘤临床, 2018, 45(9): 468-471. doi: 10.3969/j.issn.1000-8179.2018.09.294
引用本文: 张佳奇, 赵路军, 刘宁波, 王平. 粒细胞-巨噬细胞集落刺激因子联合放疗研究进展[J]. 中国肿瘤临床, 2018, 45(9): 468-471. doi: 10.3969/j.issn.1000-8179.2018.09.294
Zhang Jiaqi, Zhao Lujun, Liu Ningbo, Wang Ping. Advances of granulocyte-macrophage colony-stimulating factor combinied with radiotherapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2018, 45(9): 468-471. doi: 10.3969/j.issn.1000-8179.2018.09.294
Citation: Zhang Jiaqi, Zhao Lujun, Liu Ningbo, Wang Ping. Advances of granulocyte-macrophage colony-stimulating factor combinied with radiotherapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2018, 45(9): 468-471. doi: 10.3969/j.issn.1000-8179.2018.09.294

粒细胞-巨噬细胞集落刺激因子联合放疗研究进展

doi: 10.3969/j.issn.1000-8179.2018.09.294
基金项目: 

国家自然科学基金项目 81372429

详细信息
    作者简介:

    张佳奇  专业方向为肿瘤放射治疗学。E-mail:1151214610@qq.com

    通讯作者:

    王平  wangping@tjmuch.com

Advances of granulocyte-macrophage colony-stimulating factor combinied with radiotherapy

Funds: 

National Natural Science Foundation of China 81372429

More Information
  • 摘要: 粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)作为一种造血因子可以有效诱导多种具有抑瘤效应的免疫细胞增殖,从而发挥抗肿瘤免疫反应。放疗作为肿瘤治疗的主要手段之一,不仅可以直接杀伤肿瘤细胞,而且会对抗肿瘤免疫产生影响。多项临床研究提示,放疗联合GM-CSF可以诱导产生旁观者效应并增强对肿瘤的远期控制,从而增强放疗的抗肿瘤效应。本文就GM-CSF及GM-CSF联合放疗的研究进展予以综述。

     

  • [1] Rosas M, Gordon S, Taylor PR. Characterisation of the expression and function of the GM-CSF receptor alpha-chain in mice[J]. Eur J Immunol, 2007, 37(9):2518-2528. doi: 10.1002/(ISSN)1521-4141
    [2] Hercus TR, Broughton SE, Ekert PG, et al. The GM-CSF receptor family: mechanism of activation and implications for disease[J]. Growth Factors, 2012, 30(2):63-75. doi: 10.3109/08977194.2011.649919
    [3] Liu X, Hu J, Cao W, et al. Effects of two different immunotherapies on triple negative breast cancer in animal model[J]. Cell Immunol, 2013, 284(1-2):111-118. doi: 10.1016/j.cellimm.2013.07.018
    [4] RaziSoofiyani S, Kazemi T, Lotfipour F, et al. The effects of gene therapy with granulocyte-macrophage colony-stimulating factor in the regression of tumor masses in fibrosarcoma mouse model[J]. J Cancer Res Ther, 2017, 13(2):362-366. doi: 10.4103/0973-1482.159083
    [5] 朱曦龄, 黎功.放疗与免疫治疗协同作用的研究进展[J].中华放射肿瘤学杂志, 2017, 26(10):1227-1230. doi: 10.3760/cma.j.issn.1004-4221.2017.10.025
    [6] Burnette BC, Liang H, Lee Y, et al. The efficacy of radiotherapy relies upon induction of type Ⅰ interferon-dependent innate and adaptive immunity[J]. Cancer Res, 2011, 71(7):2488-2496. doi: 10.1158/0008-5472.CAN-10-2820
    [7] Gupta A, Probst HC, Vuong V, et al. Radiotherapy promotes tumorspecific effector CD8+T cells via dendritic cell activation[J]. J Immunol, 2012, 189(2):558-566. doi: 10.4049/jimmunol.1200563
    [8] Schaue D, Ratikan JA, Iwamoto KS, et al. Maximizing tumor immunity with fractionated radiation[J]. Int J Radiat Oncol Biol Phys, 2012, 83(4):1306-1310. doi: 10.1016/j.ijrobp.2011.09.049
    [9] Hu ZI, Ho AY, McArthur HL. Combined radiation therapy and immune checkpoint blockade therapy for breast cancer[J]. Int J Radiat Oncol Biol Phys, 2017, 99(1):153-164. doi: 10.1016/j.ijrobp.2017.05.029
    [10] Demaria S, Coleman CN, Formenti SC. Radiotherapy: changing the game in immunotherapy[J]. Trends Cancer, 2016, 2(6):286-294. doi: 10.1016/j.trecan.2016.05.002
    [11] Lugade AA, Sorensen EW, Gerber SA, et al. Radiation-induced IFNgamma production within the tumor microenvironment influences antitumor immunity[J]. J Immunol, 2008, 180(5):3132-3139. doi: 10.4049/jimmunol.180.5.3132
    [12] Gupta A, Probst HC, Vuong V, et al. Radiotherapy promotes tumorspecific effector CD8+T cells via dendritic cell activation[J]. J Immunol, 2012, 189(2):558-566. doi: 10.4049/jimmunol.1200563
    [13] Liujarin X, Stoopler MB, Raftopoulos H, et al. Histologic assessment of non-small cell lung carcinoma after neoadjuvant therapy[J]. Mod Pathol, 2003, 16(11):1102-1108. doi: 10.1097/01.MP.0000096041.13859.AB
    [14] Romo N, Magri G, Muntasell A, et al. Natural killer cell-mediated response to human cytomegalovirus-infected macrophages is modulated by their functional polarization[J]. J Leukoc Biol, 2011, 90(4): 717-726. doi: 10.1189/jlb.0311171
    [15] Dranoff G. GM-CSF-based cancer vaccines[J]. Immunol Rev, 2002, (188):147-154. http://www.ncbi.nlm.nih.gov/pubmed/12445288
    [16] Guo C, Manjili MH, Subjeck JR, et al. Therapeutic cancer vaccines: past, present and future[J]. Adv Cancer Res, 2013, (119):421-475. http://www.ncbi.nlm.nih.gov/pubmed/23870514
    [17] Deng G, Hu P, Zhang J, et al. Elevated serum granulocyte-macrophage colony-stimulating factor levels during radiotherapy predict favorable outcomes in lung and esophageal cancer[J]. Oncotarget, 2016, 7(51):85142-85150. http://www.ncbi.nlm.nih.gov/pubmed/27835886
    [18] Lumniczky K, Desaknai S, Mangel L, et al. Local tumor irradiation augments the anti-tumor effect of cytokine producing autologous cancer cell vaccines in a murine glioma model[J]. Eur J Cancer, 2001, 37(1):44-52. http://www.ncbi.nlm.nih.gov/pubmed/11916244/
    [19] Golden EB, Chhabra A, Chachoua A, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proofof-principle trial[J]. Lancet Oncol, 2015, 16(7):795-803. doi: 10.1016/S1470-2045(15)00054-6
    [20] Shi F, Wang X, Teng F, et al. Abscopal effect of metastatic pancreatic cancer after local radiotherapy and granulocyte-macrophage colony-stimulating factor therapy[J]. Cancer Biol Ther, 2017, 18(3):137-141. doi: 10.1080/15384047.2016.1276133
    [21] Panje C, Guckenberger M. Abskopale effekte der lokalen radiotherapie in kombination mit systemischer Immuntherapie bei patienten mit metastasierten soliden Tumoren[J]. Strahlentherapie Und Onkologie, 2016, 192(1):72-74. doi: 10.1007/s00066-015-0921-4
    [22] Harrington KJ, Hingorani M, Tanay MA, et al. PhaseⅠ/Ⅱstudy of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage Ⅲ/Ⅳ squamous cell cancer of the head and neck[J]. Clin Cancer Res, 2010, 16(15):4005-4015. doi: 10.1158/1078-0432.CCR-10-0196
    [23] Clive KS, Tyler JA, Clifton GT, et al. Use of GM-CSF as an adjuvant with cancer vaccines: beneficial or detrimental[J]? Exp Rev Vaccines, 2010, 9(5):519-525. doi: 10.1586/erv.10.40
    [24] Parmiani G, Castelli C, Pilla L, et al. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients[J]. Ann Oncol, 2007, 18(2):226-232. http://www.ncbi.nlm.nih.gov/pubmed/17116643
    [25] Li J, Bouton-Verville H, Holmes LM, et al. Inhibition or promotion of tumor growth by granulocyte-macrophage colony stimulating factor derived from engineered tumor cells is dose-dependent[J]. Anticancer Res, 2004, 24(5A):2717. https://www.researchgate.net/profile/Hilary_Bouton-Verville/publication/8202305_Inhibition_or_promotion_of_tumor_growth_by_granulocyte-macrophage_colony_stimulating_factor_derived_from_engineered_tumor_cells_is_dose-dependent/links/09e415081751ce1ded000000.pdf?origin=publication_list
    [26] Triozzi PL, Achberger S, Aldrich W, et al. Differential immunologic and microRNA effects of 2 dosing regimens of recombinant human granulocyte/macrophage colony stimulating factor[J]. J Immun, 2012, 35(7):587-594. doi: 10.1097/CJI.0b013e31826b20b6
    [27] Bayne L, Beatty G, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer[J]. Cancer Cell, 2012, 21 (6):822-835. doi: 10.1016/j.ccr.2012.04.025
    [28] Pylayeva-Gupta Y, Lee KE, Hajdu CH, et al. Oncogenic kras-induced GM-CSF production promotes the development of pancreatic neoplasia[J]. Cancer Cell, 2012, 21(6):836-847. doi: 10.1016/j.ccr.2012.04.024
    [29] 姜南雁, 唐隽, 徐云升.GM-CSF在肿瘤免疫治疗中的作用最新研究进展[J].免疫学杂志, 2015, (8):717-722. http://www.cnki.com.cn/Article/CJFDTOTAL-MYXZ201508015.htm
    [30] Bambury RM, Teo MY, Power DG, et al. The association of pre-treatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme[J]. J Neurooncol, 2013, 114(1): 149-154. doi: 10.1007/s11060-013-1164-9
    [31] 陆意, 黄闽杰, 仇建波, 等.立体定向放疗联合免疫治疗晚期恶性肿瘤进展[J].中华放射肿瘤学杂志, 2017, 26(10):1214-1217. doi: 10.3760/cma.j.issn.1004-4221.2017.10.022
    [32] Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment-tumorigenesis and therapy[J]. Nat Rev Cancer, 2005, 5 (11):867-875. doi: 10.1038/nrc1735
    [33] Qu Y, Zhang B, Liu S, et al. 2-Gy whole-body irradiation significantly alters the balance of CD4+CD25+ T effector cells and CD4+CD25+Foxp3+T regulatory cells in mice[J]. Cell Mol Immun, 2010, 7(6):419. doi: 10.1038/cmi.2010.45
    [34] Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy[J]. Nat Med, 2007, 13(9):1050. doi: 10.1038/nm1622
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  7
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-21
  • 修回日期:  2018-03-22
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回