胃癌分子流行病学研究进展

黄莎 戴瑨 高娟娟 游伟程 潘凯枫 李文庆

黄莎, 戴瑨, 高娟娟, 游伟程, 潘凯枫, 李文庆. 胃癌分子流行病学研究进展[J]. 中国肿瘤临床, 2019, 46(1): 16-21. doi: 10.3969/j.issn.1000-8179.2019.01.848
引用本文: 黄莎, 戴瑨, 高娟娟, 游伟程, 潘凯枫, 李文庆. 胃癌分子流行病学研究进展[J]. 中国肿瘤临床, 2019, 46(1): 16-21. doi: 10.3969/j.issn.1000-8179.2019.01.848
Huang Sha, Dai Jin, Gao Juanjuan, You Weicheng, Pan Kaifeng, Li Wenqing. Research progress in the molecular epidemiology of gastric cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(1): 16-21. doi: 10.3969/j.issn.1000-8179.2019.01.848
Citation: Huang Sha, Dai Jin, Gao Juanjuan, You Weicheng, Pan Kaifeng, Li Wenqing. Research progress in the molecular epidemiology of gastric cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(1): 16-21. doi: 10.3969/j.issn.1000-8179.2019.01.848

胃癌分子流行病学研究进展

doi: 10.3969/j.issn.1000-8179.2019.01.848
详细信息
    作者简介:

    黄莎  专业方向为胃癌分子流行病学研究。E-mail: huangss@bjmu.edu.cn

    李文庆 教授,中组部国家“千人计划”青年人才、北京市特聘专家,现任北京大学肿瘤医院研究员、博士生导师。曾获美国癌症研究协会Aflac Incorporated Award、Dermatology Foundation职业生涯进展奖、NIH中国学者联合会杰出科学家奖、Richard B. Salomon教师研究奖等奖励。现任中国抗癌协会青年理事会副理事长、肿瘤流行病学专委会以及胃癌专委会基础与病理学组委员、中国环境诱变剂学会生物标志物专业委员会委员和青年委员会副主任委员。担任British Journal of Dermatology副编辑、Scientific report编委,肿瘤综合治疗电子杂志副主编,担任多个国际基金项目的评审专家和包括JAMA等37个SCI杂志特约审稿人。已发表SCI收录期刊全文类论文94篇。参编英文著作2部

    通讯作者:

    李文庆  wenqing_li@bjmu.edu.cn

Research progress in the molecular epidemiology of gastric cancer

More Information
  • 摘要: 胃癌是发病率和死亡率较高的恶性肿瘤。近年来,随着分子生物学技术的发展和各种新兴组学检测技术的涌现,胃癌分子流行病学工作者广泛探讨人群危险因素暴露、癌前病变、胃癌形成等过程中的相关遗传和宿主因素以及环境-遗传交互作用,探索相关的生物学标志物,为胃癌的预防和控制提供了重要证据。本文综述了近年来胃癌分子流行病学最新研究进展,分别阐述基于候选策略下的血清和血浆标志物研究、全基因组关联研究、全外显子组测序研究、基于组织芯片技术的研究以及代谢组学和微生物组学等方面的现有研究证据,为未来胃癌分子流行病学研究工作提供借鉴和参考,促进胃癌的病因学研究和精准防控。

     

  • 表  1  基于候选策略的血清/血浆标志物

    表  2  全基因组关联研究报道的胃癌相关遗传位点

  • [1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. doi: 10.3322/caac.v68.6
    [2] Murphy G, Abnet CC, Choo-Wosoba H, et al. Serum gastrin and cholecystokinin are associated with subsequent development of gastric cancer in a prospective cohort of Finnish smokers[J]. Int J Epidemiol, 2017, 46(3):914-923. doi: 10.1093/ije/dyx030
    [3] Pan KF, Formichella L, Zhang L, et al. Helicobacter pylori antibody responses and evolution of precancerous gastric lesions in a Chinese population[J]. Int J Cancer, 2014, 134(9):2118-2125. doi: 10.1002/ijc.28560
    [4] Murphy G, Freedman ND, Michel A, et al. Prospective study of Helicobacter pylori antigens and gastric noncardia cancer risk in the nutrition intervention trial cohort[J]. Int J Cancer, 2015, 137(8):1938- 1946. doi: 10.1002/ijc.29543
    [5] Cai H, Ye F, Michel A, et al. Helicobacter pylori blood biomarker for gastric cancer risk in East Asia[J]. Int J Epidemiol, 2016, 45(3):774-781. doi: 10.1093/ije/dyw078
    [6] Epplein M, Butt J, Zhang Y, et al. Validation of a blood biomarker for identification of individuals at high risk for gastric cancer[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27(12):1472-1479. doi: 10.1158/1055-9965.EPI-18-0582
    [7] Murphy G, Kamangar F, Dawsey SM, et al. The relationship between serum ghrelin and the risk of gastric and esophagogastric junctional adenocarcinomas[J]. J Natl Cancer Inst, 2011, 103(14):1123-1129. doi: 10.1093/jnci/djr194
    [8] Soleyman-Jahi S, Abdirad A, Fallah AA, et al. Prognostic significance of preoperative and postoperative plasma levels of ghrelin in gastric cancer: 3-year survival study[J]. Clin Transl Gastroenterol, 2017, 8(1): e209. doi: 10.1038/ctg.2016.64
    [9] Eussen SJPM, Vollset SE, Hustad S, et al. Vitamins B2 and B6 and genetic polymorphisms related to one- carbon metabolism as risk factors for gastric adenocarcinoma in the european prospective investigation into cancer and nutrition[J]. Cancer Epidemiol Biomarkers Prev, 2010, 19(1):28-38. http://cat.inist.fr/?aModele=afficheN&cpsidt=22447311
    [10] Miranti EH, Stolzenberg-Solomon R, Weinstein SJ, et al. Low vitamin B12 increases risk of gastric cancer: A prospective study of one-carbon metabolism nutrients and risk of upper gastrointestinal tract cancer[J]. Int J Cancer, 2017, 141(6):1120-1129. doi: 10.1002/ijc.v141.6
    [11] Murphy G, Fan JH, Mark SD, et al. Prospective study of serum cysteine levels and oesophageal and gastric cancers in China[J]. Gut, 2011, 60 (5):618-623. doi: 10.1136/gut.2010.225854
    [12] Petrick JL, Hyland PL, Caron P, et al. Associations between prediagnostic concentrations of circulating sex steroid hormones and esophageal/ gastric cardia adenocarcinoma among men[J]. J Natl Cancer Inst, 2018. https://academic.oup.com/jnci/article/111/1/34/4999070
    [13] Song MY, Pan KF, Su HJ, et al. Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer[J]. Plos One, 2012, 7(3):e33608. doi: 10.1371/journal.pone.0033608
    [14] Dong LM, Potter JD, White E, et al. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes[J]. JAMA, 2008, 299(20): 2423-2436. doi: 10.1001/jama.299.20.2423
    [15] Sakamoto H, Yoshimura K, Saeki N, et al. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer[J]. Nat Genet, 2008, 40(6): 730-740. doi: 10.1038/ng.152
    [16] Wang LD, Zhou FY, Li XM, et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54[J]. Nat Genet, 2010, 42(9): 759. doi: 10.1038/ng.648
    [17] Abnet CC, Freedman ND, Hu N, et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma[J]. Nat Genet, 2010, 42(9):764. doi: 10.1038/ng.649
    [18] Shi Y, Hu Z, Wu C, et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1 [J]. Nat Genet, 2011, 43(12):1215-1218. doi: 10.1038/ng.978
    [19] Hu N, Wang Z, Song X, et al. Genome-wide association study of gastric adenocarcinoma in Asia: a comparison of associations between cardia and non-cardia tumours[J]. Gut, 2016, 65(10):1611-1618. doi: 10.1136/gutjnl-2015-309340
    [20] Wang Z, Dai J, Hu N, et al. Identification of new susceptibility loci for gastric non-cardia adenocarcinoma: pooled results from two Chinese genome-wide association studies[J]. Gut, 2017, 66(4):581-587. doi: 10.1136/gutjnl-2015-310612
    [21] Wang K, Kan J, Yuen ST, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer[J]. Nat Genet, 2011, 43(12):1219-1223. doi: 10.1038/ng.982
    [22] Rokutan H, Hosoda F, Hama N, et al. Comprehensive mutation profiling of mucinous gastric carcinoma[J]. J Pathol, 2016, 240(2):137-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69ddc1176400197a3c180c7d296da1d2
    [23] Hu N, Kadota M, Liu H, et al. Genomic landscape of somatic alterations in esophageal squamous cell carcinoma and gastric cancer[J]. Cancer Res, 2016, 76(7):1714-1723. doi: 10.1158/0008-5472.CAN-15-0338
    [24] Kakiuchi M, Nishizawa T, Ueda H, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma[J]. Nat Genet, 2014, 46(6):583-587. doi: 10.1038/ng.2984
    [25] Choi JH, Kim YB, Ahn JM, et al. Identification of genomic aberrations associated with lymph node metastasis in diffuse-type gastric cancer [J]. Exp Mol Med, 2018, 50(4):6. http://www.nature.com/articles/s12276-017-0009-6
    [26] Fewings E, Larionov A, Redman J, et al. Germline pathogenic variants in PALB2 and other cancer- predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study[J]. Lancet Gastroenterol Hepatol, 2018, 3(7):489-498. doi: 10.1016/S2468-1253(18)30079-7
    [27] Sahasrabudhe R, Lott P, Bohorquez M, et al. Germline mutations in PALB2, BRCA1, and RAD51C, which regulate DNA recombination repair, in patients with gastric cancer[J]. Gastroenterology, 2017, 152(5):983- 986. doi: 10.1053/j.gastro.2016.12.010
    [28] Majewski IJ, Kluijt I, Cats A, et al. An alpha-E-catenin (CTNNA1) mutation in hereditary diffuse gastric cancer[J]. J Pathol, 2013, 229(4):621- 629. doi: 10.1002/path.4152
    [29] Liu J, Mccleland M, Stawiski EW, et al. Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer[J]. Nat Commun, 2014, 5:3830. doi: 10.1038/ncomms4830
    [30] Park H, Cho SY, Kim H, et al. Genomic alterations in BCL2L1 and DLC1 contribute to drug sensitivity in gastric cancer[J]. Proc Natl Acad Sci U S A, 2015, 112(40):12492-12497. doi: 10.1073/pnas.1507491112
    [31] Ishimoto T, Miyake K, Nandi T, et al. Activation of transforming growth factor beta 1 signaling in gastric cancer- associated fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells[J]. Gastroenterology, 2017, 153(1):191-204. doi: 10.1053/j.gastro.2017.03.046
    [32] Li WQ, Hu N, Burton VH, et al. PLCE1 mRNA and protein expression and survival of patients with esophageal squamous cell carcinoma and gastric adenocarcinoma[J]. Cancer Epidemiol Biomarkers Prev, 2014, 23(8):1579-1588. doi: 10.1158/1055-9965.EPI-13-1329
    [33] Kang MH, Choi H, Oshima M, et al. Estrogen-related receptor gamma functions as a tumor suppressor in gastric cancer[J]. Nat Commun, 2018, 9(1):1920. http://www.nature.com/articles/s41467-018-04244-2
    [34] Chen CN, Lin JJ, Chen JJ, et al. Gene expression profile predicts patient survival of gastric cancer after surgical resection[J]. J Clin Oncol, 2005, 23(29):7286-7295. doi: 10.1200/JCO.2004.00.2253
    [35] Cho JY, Lim JY, Cheong JH, et al. Gene expression signature-based prognostic risk score in gastric cancer[J]. Clin Cancer Res, 2011, 17(7): 1850-1857. doi: 10.1158/1078-0432.CCR-10-2180
    [36] Zhou L, Shang Y, Liu C, et al. Overexpression of PrPc, combined with MGr1-Ag/37LRP, is predictive of poor prognosis in gastric cancer[J]. Int J Cancer, 2014, 135(10):2329-2337. doi: 10.1002/ijc.28883
    [37] Wang L, Yin J, Wang X, et al. C-type lectin-like receptor 2 suppresses akt signaling and invasive activities of gastric cancer cells by blocking expression of phosphoinositide 3-kinase subunits[J]. Gastroenterology, 2016, 150(5):1183-1195. doi: 10.1053/j.gastro.2016.01.034
    [38] Qian Y, Wong CC, Xu J, et al. Sodium channel subunit scnn1b suppresses gastric cancer growth and metastasis via GRP78 degradation[J]. Cancer Res, 2017, 77(8):1968-1982. doi: 10.1158/0008-5472.CAN-16-1595
    [39] Kuligowski J, Sanjuan-Herraez D, Vazquez-Sanchez MA, et al. Metabolomic analysis of gastric cancer progression within the correa's cascade using ultraperformance liquid chromatography-mass spectrometry[J]. J Proteome Res, 2016, 15(8):2729-2738. doi: 10.1021/acs.jproteome.6b00281
    [40] Lario S, Ramirez-Lazaro MJ, Sanjuan-Herraez D, et al. Plasma sample based analysis of gastric cancer progression using targeted metabolomics[J]. Sci Rep, 2017, 7(1):17774. http://www.nature.com/articles/s41598-017-17921-x
    [41] Chan AW, Mercier P, Schiller D, et al. (1)H-NMR urinary metabolomic profiling for diagnosis of gastric cancer[J]. Br J Cancer, 2016, 114(1):59- 62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a738071aa9393e6e05119d648870bf68
    [42] Jung J, Jung Y, Bang EJ, et al. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based metabolomic profiling[J]. Ann Surg Oncol, 2014, 21(4):736-742. doi: 10.1245/s10434-014-3886-0
    [43] Wang H, Zhang H, Deng P, et al. Tissue metabolic profiling of human gastric cancer assessed by (1) H NMR[J]. BMC Cancer, 2016, 16:371. doi: 10.1186/s12885-016-2356-4
    [44] Zhang H, Cui L, Liu W, et al. (1)H NMR metabolic profiling of gastric cancer patients with lymph node metastasis[J]. Metabolomics, 2018, 14(4):47. doi: 10.1007/s11306-018-1344-x
    [45] Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F, et al. Structure of the human gastric bacterial community in relation to Helicobacter pylori status[J]. ISME J, 2011, 5(4):574-579. doi: 10.1038/ismej.2010.149
    [46] Bik EM, Eckburg PB, Gill SR, et al. Molecular analysis of the bacterial microbiota in the human stomach[J]. Proc Natl Acad Sci U S A, 2006, 103(3):732-737. doi: 10.1073/pnas.0506655103
    [47] Lertpiriyapong K, Whary MT, Muthupalani S, et al. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis[J]. Gut, 2014, 63(1):54-63. doi: 10.1136/gutjnl-2013-305178
    [48] Dicksved J, Lindberg M, Rosenquist M, et al. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls[J]. J Med Microbiol, 2009, 58(4):509-516. doi: 10.1099/jmm.0.007302-0
    [49] Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota [J]. Gut, 2018, 67(2):226-236. doi: 10.1136/gutjnl-2017-314205
    [50] Coker OO, Dai Z, Nie Y, et al. Mucosal microbiome dysbiosis in gastric carcinogenesis[J]. Gut, 2018, 67(6):1024-1032. doi: 10.1136/gutjnl-2017-314281
  • 加载中
表(2)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  10
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-16
  • 修回日期:  2018-12-20
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回