染色体8q24区域异常在乳腺癌中的研究进展

贾宏琴 李帅 韩芸蔚 刘芳芳 李伟东 付丽

贾宏琴, 李帅, 韩芸蔚, 刘芳芳, 李伟东, 付丽. 染色体8q24区域异常在乳腺癌中的研究进展[J]. 中国肿瘤临床, 2019, 46(3): 150-153. doi: 10.3969/j.issn.1000-8179.2019.03.157
引用本文: 贾宏琴, 李帅, 韩芸蔚, 刘芳芳, 李伟东, 付丽. 染色体8q24区域异常在乳腺癌中的研究进展[J]. 中国肿瘤临床, 2019, 46(3): 150-153. doi: 10.3969/j.issn.1000-8179.2019.03.157
Jia Hongqin, Li Shuai, Han Yunwei, Liu Fangfang, Li Weidong, Fu Li. Research advances of chromosomal 8q24 aberrance in breast cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(3): 150-153. doi: 10.3969/j.issn.1000-8179.2019.03.157
Citation: Jia Hongqin, Li Shuai, Han Yunwei, Liu Fangfang, Li Weidong, Fu Li. Research advances of chromosomal 8q24 aberrance in breast cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(3): 150-153. doi: 10.3969/j.issn.1000-8179.2019.03.157

染色体8q24区域异常在乳腺癌中的研究进展

doi: 10.3969/j.issn.1000-8179.2019.03.157
基金项目: 

国家自然科学基金项目 81672637

详细信息
    作者简介:

    贾宏琴 专业方向为浸润性微乳头状癌的侵袭转移机制等研究。E-mail:jiahongqin0@163.com

    通讯作者:

    付丽, fulijyb@hotmail.com

Research advances of chromosomal 8q24 aberrance in breast cancer

Funds: 

the National Natural Science Foundation of China 81672637

More Information
  • 摘要: 近年来基因芯片、高通量测序技术,大规模发现基因组拷贝数变异和单核苷酸多态性等异常改变,其中8号染色体长臂2区4带(8q24)的高频变异在乳腺癌发生发展中的意义日益受到关注。8q24区域包含MYC、PSCA等癌基因和乳腺癌相关风险位点,在乳腺癌中该区域高频扩增与乳腺癌的发生发展及预后密切相关。本文将对乳腺癌中8q24区域的扩增及相关风险位点的特征及乳腺癌相关基因的作用进行综述。

     

  • [1] Siegel RL, Miller KD, Jemal A.Cancer statistics, 2016[J].CA Cancer J Clin, 2016, 66(1):7-30. doi: 10.3322/caac.21332
    [2] Piscuoglio S, Ng CK, Murray MP, et al.The genomic landscape of male breast cancer[J].Clin Cancer Res, 2016, 22(16):4045-4056. doi: 10.1158/1078-0432.CCR-15-2840
    [3] Afghahi A, Forgó E, Mitani AA, et al.Chromosomal copy number alterations for associations of ductal carcinoma in situ with invasive breast cancer[J].Breast Cancer Res, 2015, 17:108. doi: 10.1186/s13058-015-0623-y
    [4] Horlings HM, Lai C, Nuyten DS, et al.Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients[J].Clin Cancer Res, 2010, 16(2):651-663. doi: 10.1158/1078-0432.CCR-09-0709
    [5] Maguire SL, Peck B, Wai PT, et al.Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model[J].J Pathol, 2016, 240 (3):315-328. doi: 10.1002/path.4778
    [6] Guan Y, Kuo WL, Stilwell JL, et al.Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer[J].Clin Cancer Res, 2007, 13(19):5745-5755. doi: 10.1158/1078-0432.CCR-06-2882
    [7] Ellsworth RE, Ellsworth DL, Patney HL, et al.Genomic alterations associated with early stages of breast tumor metastasis[J].Ann Surg Oncol, 2008, 15(7):1989-1995. doi: 10.1245/s10434-008-9902-5
    [8] Meng F, Liu B, Xie G, et al.Amplification and overexpression of PSCA at 8q24 in invasive micropapillary carcinoma of breast[J].Breast Cancer Res Treat, 2017, 166(2)383-392. doi: 10.1007/s10549-017-4407-1
    [9] Bertucci F, Finetti P, Guille A, et al.Comparative genomic analysis of primary tumors and metastases in breast cancer[J].Oncotarget, 2016, 7(19):27208-27219. http://pubmedcentralcanada.ca/pmcc/articles/PMC5053643/
    [10] Magbanua MJ, Sosa EV, Roy R, et al.Genomic profiling of isolated circulating tumor cells from metastatic breast cancer patients[J]. Cancer Res, 2013, 73(1):30-40. http://www.ncbi.nlm.nih.gov/pubmed/23135909
    [11] Magbanua MJ, Melisko M, Roy R, et al.Molecular profiling of tumor cells in cerebrospinal fluid and matched primary tumors from metastatic breast cancer patients with leptomeningeal carcinomatosis [J].Cancer Res, 2013, 73(23):7134-7143. doi: 10.1158/0008-5472.CAN-13-2051
    [12] Bilal E, Vassallo K, Toppmeyer D, et al.Amplified loci on chromosomes 8 and 17 predict early relapse in ER-positive breast cancers [J].PLoS One, 2012, 7(6):e38575. doi: 10.1371/journal.pone.0038575
    [13] Simpson PT, Reis-Filho JS, Lambros MB, et al.Molecular profiling pleomorphic lobular carcinomas of the breast:evidence for a common molecular genetic pathway with classic lobular carcinomas[J]. J Pathol, 2008, 215(3):231-244. doi: 10.1002/path.v215:3
    [14] Pierga JY, Reis-Filho JS, Cleator SJ, et al.Microarray-based comparative genomic hybridisation of breast cancer patients receiving neoadjuvant chemotherapy[J].Br J Cancer, 2007, 96(2):341-351. doi: 10.1038/sj.bjc.6603483
    [15] Dieci MV, Smutná V, Scott V, et al.Whole exome sequencing of rare aggressive breast cancer histologies[J].Breast Cancer Res Treat, 2016, 156(1):21-32. doi: 10.1007/s10549-016-3718-y
    [16] Loo LW, Grove DI, Williams EM, et al.Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes[J].Cancer Res, 2004, 64(23):8541-8549. doi: 10.1158/0008-5472.CAN-04-1992
    [17] Shen L, O'Shea JM, Kaadige MR, et al.Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP[J]. Proc Natl Acad Sci U S A, 2015, 112(17):5425-5430. doi: 10.1073/pnas.1501555112
    [18] Garcia-Closas M, Hall P, Nevanlinna H, et al.Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics[J].PLoS Genet, 2008, 4(4):e1000054. doi: 10.1371/journal.pgen.1000054
    [19] Long J, Shu XO, Cai Q, et al.Evaluation of breast cancer susceptibility loci in Chinese women[J].Cancer Epidemiol Biomarkers Prev, 2010, 19(9):2357-2365. doi: 10.1158/1055-9965.EPI-10-0054
    [20] Campa D, Kaaks R, Le Marchand L, et al.Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium[J].J Natl Cancer Inst, 2011, 103(16): 1252-1263. doi: 10.1093/jnci/djr265
    [21] Zhang Z, Zhu Z, Zhang B, et al.Frequent mutation of rs13281615 and its association with PVT1 expression and cell proliferation in breast cancer[J].J Genet Genomics, 2014, 41(4):187-195. doi: 10.1016/j.jgg.2014.03.006
    [22] Shi J, Zhang Y, Zheng W, et al.Fine-scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer[J]. Int J Cancer, 2016, 139(6):1303-1317. doi: 10.1002/ijc.v139.6
    [23] Silvestri V, Rizzolo P, Scarnò M, et al.Novel and known genetic variants for male breast cancer risk at 8q24.21, 9p21.3, 11q13.3 and14q24.1:results from a multicenter study in Italy[J].Eur J Cancer, 2015, 51(16):2289-2295. doi: 10.1016/j.ejca.2015.07.020
    [24] Li Q, Seo JH, Stranger B, et al.Integrative eQTL-based analyses reveal the biology of breast cancer risk loci[J].Cell, 2013, 152(3):633- 641. doi: 10.1016/j.cell.2012.12.034
    [25] Baxter JS, Leavy OC, Dryden NH, et al.Capture Hi-C identifies putative target genes at 33 breast cancer risk loci[J].Nat Commun, 2018, 9(1):1028. http://europepmc.org/abstract/MED/29531215
    [26] Zhang Z, Zhou C, Chang Y, et al.Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer[J].Cancer Lett, 2016, 376(1):62-73. doi: 10.1016/j.canlet.2016.03.022
    [27] Cao K, Li M, Miao J, et al.CCDC26 knockdown enhances resistance of gastrointestinal stromal tumor cells to imatinib by interacting with c-KIT[J].Am J Transl Res, 2018, 10(1):274-282. http://europepmc.org/abstract/MED/29423012
    [28] Ahmadiyeh N, Pomerantz MM, Grisanzio C, et al.8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC[J].Proc Natl Acad Sci U S A, 2010, 107(21):9742- 9746. doi: 10.1073/pnas.0910668107
    [29] Du M, Yuan T, Schilter KF, et al.Prostate cancer risk locus at 8q24 as a regulatory hub by physical interactions with multiple genomic loci across the genome[J].Hum Mol Genet, 2015, 24(1):154-166. doi: 10.1093/hmg/ddu426
    [30] Grampp S, Platt JL, Lauer V, et al.Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer[J].Nat Commun, 2016, 7:13183. doi: 10.1038/ncomms13183
  • 加载中
计量
  • 文章访问数:  132
  • HTML全文浏览量:  18
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-30
  • 修回日期:  2019-01-22
  • 刊出日期:  2019-02-15

目录

    /

    返回文章
    返回