mRNA疗法在肿瘤免疫治疗中的应用

潘燕平 张昊 向虹 阳小胡 胡勇

潘燕平, 张昊, 向虹, 阳小胡, 胡勇. mRNA疗法在肿瘤免疫治疗中的应用[J]. 中国肿瘤临床, 2019, 46(3): 154-158. doi: 10.3969/j.issn.1000-8179.2019.03.246
引用本文: 潘燕平, 张昊, 向虹, 阳小胡, 胡勇. mRNA疗法在肿瘤免疫治疗中的应用[J]. 中国肿瘤临床, 2019, 46(3): 154-158. doi: 10.3969/j.issn.1000-8179.2019.03.246
Pan Yanping, Zhang Hao, Xiang Hong, Yang Xiaohu, Hu Yong. Application of mRNA in tumor immunotherapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(3): 154-158. doi: 10.3969/j.issn.1000-8179.2019.03.246
Citation: Pan Yanping, Zhang Hao, Xiang Hong, Yang Xiaohu, Hu Yong. Application of mRNA in tumor immunotherapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(3): 154-158. doi: 10.3969/j.issn.1000-8179.2019.03.246

mRNA疗法在肿瘤免疫治疗中的应用

doi: 10.3969/j.issn.1000-8179.2019.03.246
基金项目: 

深圳市海外高层次人才创新创业专项资金 KQTD20170331160605510

详细信息
    作者简介:

    潘燕平 专业方向为mRNA基因治疗及肿瘤的细胞免疫治疗研究。E-mail:925391180@qq.com

    通讯作者:

    胡勇, yong.hu@siat.ac.cn

Application of mRNA in tumor immunotherapy

Funds: 

Shenzhen Special Fund for Overseas High-level Talent Innovation and Entrepreneurship Program KQTD20170331160605510

More Information
  • 摘要: mRNA疗法以mRNA为制剂治疗疾病,是一种新兴的基因疗法,既可通过功能性蛋白的表达治疗基因缺陷性疾病或组织修复,又可通过抗原或抗体或受体的表达应用于免疫治疗,具有极大的应用价值。在肿瘤免疫治疗中,编码肿瘤相关抗原、特异性抗原、抗体或受体的mRNA进入细胞质后翻译成蛋白质,进而诱导特定免疫反应,实现疾病的预防与治疗。随着免疫治疗技术和mRNA的技术发展,针对恶性肿瘤和传染性疾病等的mRNA免疫治疗已步入临床应用阶段。本文将就mRNA的合成、纯化及修饰,基于mRNA的肿瘤免疫疗法、临床试验结果及开发新药所遇到的关键性机遇与挑战进行综述。

     

  • [1] Rosenberg SA.IL-2:the first effective immunotherapy for human cancer[J].J Immunol, 2014, 192(12):5451-5458. doi: 10.4049/jimmunol.1490019
    [2] Kopp LM, Katsanis E.Targeted immunotherapy for pediatric solid tumors[J].Oncoimmunology, 2016, 5(3):e1087637. doi: 10.1080/2162402X.2015.1087637
    [3] Topalian SL, Drake CG, Pardoll DM.Immune checkpoint blockade:a common denominator approach to cancer therapy[J].Cancer Cell, 2015, 27(4):450-461. doi: 10.1016/j.ccell.2015.03.001
    [4] Moore T, Wagner CR, Scurti GM, et al.Clinical and immunologic evaluation of three metastatic melanoma patients treated with autologous melanoma-reactive TCR-transduced T cells[J].Cancer Immunol Immunother, 2018, 67(2):311-325. http://europepmc.org/abstract/MED/29052782
    [5] Wang Y, Tang G, Xu L, et al.Construction of CD19-CAR retroviral vector and modification of its transduction of human T-lymphocytes[J].Zhonghua Xue Ye Xue Za Zhi, 2015, 36(4):331-336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhxyx201504016
    [6] Park JH, Riviere I, Gonen M, et al.Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia[J].N Engl J Med, 2018, 378(5):449-459. doi: 10.1056/NEJMoa1709919
    [7] Kallen KJ, Heidenreich R, Schnee M, et al.A novel, disruptive vaccination technology:self-adjuvanted RNActive ((R)) vaccines[J].Hum Vaccin Immunother, 2013, 9(10):2263-2276. doi: 10.4161/hv.25181
    [8] Vallazza B, Petri S, Poleganov MA, et al.Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond[J].Wiley Interdiscip Rev RNA, 2015, 6(5):471-499. doi: 10.1002/wrna.1288
    [9] Sahin U, Kariko K, Tureci O.mRNA-based therapeutics--developing a new class of drugs[J].Nat Rev Drug Discov, 2014, 13(10):759-780. doi: 10.1038/nrd4278
    [10] Vaidyanathan S, Azizian KT, Haque A, et al.Uridine depletion and chemical modification increase cas9 mRNA activity and reduce immunogenicity without HPLC purification[J].Mol Ther Nucleic Acids, 2018, 12:530-542. doi: 10.1016/j.omtn.2018.06.010
    [11] Boccaletto P, Machnicka MA, Purta E, et al.MODOMICS:a database of RNA modification pathways.2017 update[J].Nucleic Acids Res, 2018, 46(D1):303-307. doi: 10.1093/nar/gkx1030
    [12] Li X, Ma S, Yi C.Pseudouridine:the fifth RNA nucleotide with renewed interests[J].Curr Opin Chem Biol, 2016, 33:108-116. doi: 10.1016/j.cbpa.2016.06.014
    [13] Huber SM, van Delft P, Mendil L, et al.Formation and abundance of 5-hydroxymethylcytosine in RNA[J].Chembiochem, 2015, 16(5): 752-755. doi: 10.1002/cbic.201500013
    [14] Song J, Yi C.Chemical Modifications to RNA:a new layer of gene expression regulation[J].ACS Chem Biol, 2017, 12(2):316-325. doi: 10.1021/acschembio.6b00960
    [15] Kariko K, Muramatsu H, Ludwig J, et al.Generating the optimal mRNA for therapy:HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA[J].Nucleic Acids Res, 2011, 39(21):e142. doi: 10.1093/nar/gkr695
    [16] Thess A, Grund S, Mui BL, et al.Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals[J].Mol Ther, 2015, 23(9):1456-1464. doi: 10.1038/mt.2015.103
    [17] Vacchelli E, Vitale I, Eggermont A, et al.Trial watch:Dendritic cellbased interventions for cancer therapy[J].Oncoimmunology, 2013, 2(10):e25771. doi: 10.4161/onci.25771
    [18] Mu LJ, Kyte JA, Kvalheim G, et al.Immunotherapy with allotumourmRNA-transfected dendritic cells in androgen-resistant prostate cancer patients[J].Br J Cancer, 2005, 93(7):749-756. doi: 10.1038/sj.bjc.6602761
    [19] Vik-Mo EO, Nyakas M, Mikkelsen BV, et al.Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma[J].Cancer Immunol Immunother, 2013, 62(9):1499-1509. doi: 10.1007/s00262-013-1453-3
    [20] Yadav M, Jhunjhunwala S, Phung QT, et al.Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing[J].Nature, 2014, 515(7528):572-576. doi: 10.1038/nature14001
    [21] Cheever MA, Allison JP, Ferris AS, et al.The prioritization of cancer antigens:a national cancer institute pilot project for the acceleration of translational research[J].Clin Cancer Res, 2009, 15(17):5323-5337. doi: 10.1158/1078-0432.CCR-09-0737
    [22] Linette GP, Carreno BM.Neoantigen vaccines pass the immunogenicity test[J].Trends Mol Med, 2017, 23(10):869-871. doi: 10.1016/j.molmed.2017.08.007
    [23] Yarchoan M, Johnson BA 3rd, Lutz ER, et al.Targeting neoantigens to augment antitumour immunity[J].Nat Rev Cancer, 2017, 17(4): 209-222. doi: 10.1038/nrc.2016.154
    [24] Matsushita H, Vesely MD, Koboldt DC, et al.Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting [J].Nature, 2012, 482(7385):400-404. doi: 10.1038/nature10755
    [25] Tran E, Robbins PF, Rosenberg SA.Final common pathway'of human cancer immunotherapy:targeting random somatic mutations [J].Nat Immunol, 2017, 18(3):255-262. doi: 10.1038/ni.3682
    [26] Alexandrov LB, Nik-Zainal S, Wedge DC, et al.Signatures of mutational processes in human cancer[J].Nature, 2013, 500(7463):415- 421. doi: 10.1038/nature12477
    [27] Wilgenhof S, Corthals J, Heirman C, et al.Phase Ⅱ study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma[J].J Clin Oncol, 2016, 34(12):1330-1338. doi: 10.1200/JCO.2015.63.4121
    [28] Wilgenhof S, Van Nuffel AM, Benteyn D, et al.A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients[J].Ann Oncol, 2013, 24(10):2686-2693. doi: 10.1093/annonc/mdt245
    [29] Chen P, Liu X, Sun Y, et al.Dendritic cell targeted vaccines:Recent progresses and challenges[J].Hum Vaccin Immunother, 2016, 12 (3):612-622. doi: 10.1080/21645515.2015.1105415
    [30] Aarntzen EH, Schreibelt G, Bol K, et al.Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+and CD8+T cells responses in stage Ⅲ and IV melanoma patients[J].Clin Cancer Res, 2012, 18(19):5460-5470. doi: 10.1158/1078-0432.CCR-11-3368
    [31] Anguille S, Van de Velde AL, Smits EL, et al.Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia[J].Blood, 2017, 130(15):1713-1721. doi: 10.1182/blood-2017-04-780155
    [32] Khoury HJ, Collins RH Jr, Blum W, et al.Immune responses and longterm disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia[J]. Cancer, 2017, 123(16):3061-3072. doi: 10.1002/cncr.v123.16
    [33] Batich KA, Reap EA, Archer GE, et al.Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination[J].Clin Cancer Res, 2017, 23(8):1898-1909. doi: 10.1158/1078-0432.CCR-16-2057
    [34] Reap EA, Suryadevara CM, Batich KA, et al.Dendritic cells enhance polyfunctionality of adoptively transferred T cells that target cytomegalovirus in glioblastoma[J].Cancer Res, 2018, 78(1):256-264. doi: 10.1158/0008-5472.CAN-17-0469
    [35] Pardi N, Hogan MJ, Pelc RS, et al.Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination[J].Nature, 2017, 543(7644):248-251. doi: 10.1038/nature21428
    [36] Sahin U, Derhovanessian E, Miller M, et al.Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer[J].Nature, 2017, 547(7662):222-226. doi: 10.1038/nature23003
    [37] Oberli MA, Reichmuth AM, Dorkin JR, et al.Lipid nanoparticle assisted mrna delivery for potent cancer immunotherapy[J].Nano Lett, 2017, 17(3):1326-1335. doi: 10.1021/acs.nanolett.6b03329
    [38] Robbins PF, Kassim SH, Tran TL, et al.A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response[J].Clin Cancer Res, 2015, 21(5):1019-1027. doi: 10.1158/1078-0432.CCR-14-2708
    [39] Schubert ML, Huckelhoven A, Hoffmann JM, et al.Chimeric antigen receptor t cell therapy targeting CD19-positive leukemia and lymphoma in the context of stem cell transplantation[J].Hum Gene Ther, 2016, 27(10):758-771. doi: 10.1089/hum.2016.097
    [40] Beatty GL, Haas AR, Maus MV, et al.Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies[J].Cancer Immunol Res, 2014, 2(2):112- 120. doi: 10.1158/2326-6066.CIR-13-0170
    [41] Svoboda J, Rheingold SR, Gill SI, et al.Nonviral RNA chimeric antigen receptor-modified T cells in patients with Hodgkin lymphoma [J].Blood, 2018, 132(10):1022-1026. doi: 10.1182/blood-2018-03-837609
    [42] Bertoletti A, Brunetto M, Maini MK, et al.T cell receptor-therapy in HBV-related hepatocellularcarcinoma[J].Oncoimmunology, 2015, 4 (6):e1008354. doi: 10.1080/2162402X.2015.1008354
    [43] Qasim W, Brunetto M, Gehring AJ, et al.Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient[J].J hepatol, 2015, 62(2): 486-491. doi: 10.1016/j.jhep.2014.10.001
    [44] Szeto GL, Van Egeren D, Worku H, et al.Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines[J].Sci Rep, 2015, 5:10276. doi: 10.1038/srep10276
    [45] Eggermont LJ, Paulis LE, Tel J, et al.Towards efficient cancer immunotherapy:advances in developing artificial antigen-presenting cells[J].Trends Biotechnol, 2014, 32(9):456-465. doi: 10.1016/j.tibtech.2014.06.007
  • 加载中
计量
  • 文章访问数:  177
  • HTML全文浏览量:  10
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-10
  • 修回日期:  2019-01-23
  • 刊出日期:  2019-02-15

目录

    /

    返回文章
    返回