ROS1融合基因突变在非小细胞肺癌诊断与治疗中的研究进展

江薇 王懿娜

江薇, 王懿娜. ROS1融合基因突变在非小细胞肺癌诊断与治疗中的研究进展[J]. 中国肿瘤临床, 2019, 46(5): 257-262. doi: 10.3969/j.issn.1000-8179.2019.05.084
引用本文: 江薇, 王懿娜. ROS1融合基因突变在非小细胞肺癌诊断与治疗中的研究进展[J]. 中国肿瘤临床, 2019, 46(5): 257-262. doi: 10.3969/j.issn.1000-8179.2019.05.084
Jiang Wei, Wang Yina. Role of ROS1 fusion gene mutations in diagnosis and treatment of non-small cell lung cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(5): 257-262. doi: 10.3969/j.issn.1000-8179.2019.05.084
Citation: Jiang Wei, Wang Yina. Role of ROS1 fusion gene mutations in diagnosis and treatment of non-small cell lung cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(5): 257-262. doi: 10.3969/j.issn.1000-8179.2019.05.084

ROS1融合基因突变在非小细胞肺癌诊断与治疗中的研究进展

doi: 10.3969/j.issn.1000-8179.2019.05.084
基金项目: 

浙江省自然科学基金项目 LY16H160006

详细信息
    作者简介:

    江薇 专业方向为肿瘤内科学基础研究与临床治疗。E-mail:1049726987@qq.comn

    通讯作者:

    王懿娜 1503099@zju.edu.cn

Role of ROS1 fusion gene mutations in diagnosis and treatment of non-small cell lung cancer

Funds: 

the Natural Science Foundation of Zhejiang Province LY16H160006

More Information
  • 摘要: ROS1基因重排/融合在非小细胞肺癌(non-small cell lung cancer,NSCLC)中的发生率约为1%~2%。ROS1基因融合靶向药物的问世,明显改善了ROS1融合晚期NSCLC患者的生存质量和总生存期,但大部分患者在持续用药后仍会出现获得性耐药。本文分别就ROS1融合基因的背景、检测方法、ROS1靶向治疗的临床疗效以及耐药后的策略和展望进行综述。

     

  • 表  1  ROS1融合基因检测方法优缺点比较

  • [1] Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1):7-30. doi: 10.3322/caac.21442
    [2] Chen W, Zheng R, Baade PD. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132. doi: 10.3322/caac.21338
    [3] Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017[J]. CA Cancer J Clin, 2017, 67(1):7-30. doi: 10.3322/caac.21387
    [4] Matsushime H, Wang LH, Shibuya M. Human c-ros-1 gene homologous to the v- ros sequence of UR2 sarcoma virus encodes for atransmembrane receptorlike molecule[J]. Mol Cell Biol, 1986, 6(8): 3000-3004. doi: 10.1128/MCB.6.8.3000
    [5] Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer[J]. Cell, 2007, 131(6):1190-1203. doi: 10.1016/j.cell.2007.11.025
    [6] Gu TL, Deng X, Huang F, et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma[J]. PLoS One, 2011, 6(1):e15640. doi: 10.1371/journal.pone.0015640
    [7] Birch AH1, Arcand SL, Oros KK, et al. Chromosome 3 anomalies investigated by genome wide SNP analysis of benign, low malignant potential and low grade ovarian serous tumours[J]. PLoS ONE, 2011, 6(12):e28250. doi: 10.1371/journal.pone.0028250
    [8] Lee J, Lee SE, Kang SY, et al. Identification of ROS1 rearrangement in gastric adenocarcinoma[J]. Cancer, 2013, 119(9):1627-1635. doi: 10.1002/cncr.27967
    [9] Gu TL, Deng X, Huang F, et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma[J]. PLoS One, 6(1): e15640.
    [10] Nagarajan L, Louie E, Tsujimoto Y. The human c-ros gene (ROS) is located at chromosome region 6q16-6q22[J]. Proc Natl Acad Sci USA, 1986, 83(17):6568-6572. doi: 10.1073/pnas.83.17.6568
    [11] Acquaviva J, Wong R, Charest A. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer[J]. Biochim Biophys Acta (BBA), 2009, 1795(1):37-52.
    [12] Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged nonsmall-cell lung cancer[J]. N Engl J Med, 2014, 371(21):1963-1971. doi: 10.1056/NEJMoa1406766
    [13] Bergethon K, Shaw AT, Ou SH, et al. ROS1 Rearrangements define a unique molecular class of lung cancers[J]. J Clin Oncol, 2012, 30(8): 863-870. doi: 10.1200/JCO.2011.35.6345
    [14] Scheffler M, Schultheis A, Teixido C, et al. ROS1 rearrangements in lung adenocarcinoma: prognostic impact, therapeutic options and genetic variability[J]. Oncotarget, 2015, 6(12):10577-10585.
    [15] Lindquist KE, Karlsson A, Levéen P, et al. Clinical framework for next generation sequencing based analysis of treatment predictive mutations and multiplexed gene fusion detection in non-small cell lung cancer[J]. Oncotarget, 2017, 8(21):34796-34810. http://cn.bing.com/academic/profile?id=6b82c01f5ace46ba7390d41d0e46ba47&encoded=0&v=paper_preview&mkt=zh-cn
    [16] Gainor JF, Shaw AT. Novel Targets in non- small cell lung cancer: ROS1 and RET fusions[J]. Oncologist, 2018, 18(7):865-875. http://cn.bing.com/academic/profile?id=9dace41b54f3d3f18e4e86f2a0a74635&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Mahe E. Comment on "Testing for ALK rearrangement in lung adenocarcinoma: a multicenter comparison of immunohistochemistry and fluorescent in situ hybridization"[J]. Mod Pathol, 2014, 27(10): 1423-1424. doi: 10.1038/modpathol.2014.56
    [18] Rossi G, Jocollé G, Conti A, et al. Detection of ROS1 rearrangement in non- small cell lung cancer: current and future perspectives[J]. Lung Cancer, 2017, 8:45-55. http://cn.bing.com/academic/profile?id=dfdb0df2155551db90ab9ce2b31aaa12&encoded=0&v=paper_preview&mkt=zh-cn
    [19] Rimkunas VM, Crosby KE, LiD, et al. Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG- ROS1 fusion[J]. Clin Cancer Res, 2012, 18(16):4449- 4457. doi: 10.1158/1078-0432.CCR-11-3351
    [20] Aggarwal C, Thompson JC, Black TA, et al. Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non-small cell lung cancer[J]. JAMA Oncol, 2019, 5 (2):173-180. doi: 10.1001/jamaoncol.2018.4305
    [21] Sgariglia R, Pisapia P, Nacchio M, et al. Multiplex digital colour-coded barcode technology on RNA extracted from routine cytological samples of patients with non-small cell lung cancer: pilot study[J]. J Clin Pathol, 2017, 70(9):803-806. doi: 10.1136/jclinpath-2017-204373
    [22] Rossi G, Ragazzi M, Tamagnini I, et al. Does immunohistochemistry represent a robust alternative technique in determining drugable predictive gene alterations in non- small cell lung cancer[J]. Curr Drug Targets, 2017, 18(1):13-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=408edfa60f39175412ede0379eafd5e7
    [23] Reguart N, Teixidó C, Giménez- Capitán A, et al. Identification of ALK, ROS1, and RET fusions by a multiplexed mRNA-based assay in formalin- fixed, paraffin- embedded samples from advanced nonsmall-cell lung cancer patients[J]. Clin Chem, 2017, 63(3):751-760. doi: 10.1373/clinchem.2016.265314
    [24] Cui JJ, Tran-Dubé M, Shen H, et al. Structure based drug design of crizotinib (PF- 02341066), a potent and selective dual inhibitor of mesenchymal- epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK)[J]. J Med Chem, 2011, 54(18):6342- 6363. doi: 10.1021/jm2007613
    [25] Juan O, Popat S. Crizotinib for ROS1 patients: One small step in biomarker testing, one giant leap for advanced NSCLC patients[J]. Lung Cancer, 2017, 104:131-133. doi: 10.1016/j.lungcan.2016.11.007
    [26] Mazières J, Zalcman G, Crinò L, et al. Crizotinib therapy for advanced lung adenocarcinoma and a ros1 rearrangement: results from the euros1 cohort[J]. J Clin Oncol, 2015, 33(9):992-999. doi: 10.1200/JCO.2014.58.3302
    [27] Wu YL, Yang JC, Kim DW, et al. Phase Ⅱstudy of crizotinib in east asian patients with ros1-positive advanced non-small-cell lung cancer[J]. J Clin Oncol, 2018, 36(14):1405-1411. doi: 10.1200/JCO.2017.75.5587
    [28] Costa RB, Costa RLB, Talamantes SM, et al. Systematic review and meta- analysis of selected toxicities of approved ALK inhibitors in metastatic non- small cell lung cancer[J]. Oncotarget, 2018, 9(31): 22137-22146. http://cn.bing.com/academic/profile?id=b43537ab652a1550f16a06aa3eff59ba&encoded=0&v=paper_preview&mkt=zh-cn
    [29] Lim SM, Kim HR, Lee JS, et al. Open- label, multicenter, phase Ⅱ study of ceritinib in patients with non- small-cell lung cancer harboring ROS1 rearrangement[J]. J Clin Oncol, 2017, 35(23):2613- 2618. doi: 10.1200/JCO.2016.71.3701
    [30] Cho BC, Kim DW, Bearz A, et al. ASCEND-8: a randomized phase 1 study of ceritinib, 450 mg or 600 mg, taken with a low- fat meal versus 750 mg in fasted state in patients with anaplastic lymphoma kinase (ALK)- rearranged metastatic non- small cell lung cancer (NSCLC)[J]. J Thorac Oncol, 2017, 12(9):1357-1367. doi: 10.1016/j.jtho.2017.07.005
    [31] Uchibori K, Inase N, Araki M, et al. Brigatinib combined with antiEGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer[J]. Nat Commun, 2017, 8:14768. doi: 10.1038/ncomms14768
    [32] Katayama R, Kobayashi Y, Friboulet L, et al. Cabozantinib overcomes crizotinib resistance in ROS1 fusion- positive cancer[J]. Clin Cancer Res, 2015, 21(1):166-174. doi: 10.1158/1078-0432.CCR-14-1385
    [33] Camidge DR, Kim HR, Ahn MJ, et al. Brigatinib versus crizotinib in alk-positive non-small-cell lung cancer[J]. N Engl J Med, 2018, 379 (21):2027-2039. doi: 10.1056/NEJMoa1810171
    [34] Solomon BJ, Bauer TM, Felip E, et al. Safety and efficacy of Lorlatinib (PF-06463922) from the dose-escalation component of a study in patients with advanced ALK+ or ROS1+ non-small cell lung cancer (NSCLC)[J]. J Clin Oncol, 2016, 34(Suppl):9009. http://d.old.wanfangdata.com.cn/Periodical/zhzl201410006
    [35] Shaw AT, Felip E, Bauer TM, et al. Lorlatinib in non- small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial[J]. Lancet Oncol, 2017, 18(12):1590-1599. doi: 10.1016/S1470-2045(17)30680-0
    [36] Chong CR, Bahcall M, Capelletti M, et al. Identification of existing drugs that effectively target NTRK1 and ROS1 rearrangements inLung Cancer[J]. Clin Cancer Res, 2017, 23(1):204-213. doi: 10.1158/1078-0432.CCR-15-1601
    [37] Drilon A, Ou SI, Cho BC, et al. Repotrectinib (TPX- 0005) is a next generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ ALK solvent front mutations[J]. Cancer Discov, 2018, 8(10):1227-1236. doi: 10.1158/2159-8290.CD-18-0484
    [38] Chong CR, Bahcall M, Capelletti M, et al. Identification of existing drugs that effectively target NTRK1 and ROS1 rearrangements in lung cancer [J]. Clin Cancer Res, 2017, 23(1):204-213. doi: 10.1158/1078-0432.CCR-15-1601
    [39] Lin JJ, Shaw AT. Recent advances in targeting ROS1 in lung cancer[J]. J Thorac Oncol, 2017, 12(11):1611-1625. doi: 10.1016/j.jtho.2017.08.002
    [40] Hellerstedt BA, Vogelzang NJ, Kluger HM, et al. Results of a phase 2 placebo-controlled randomized discontinuation trial of cabozantinib in patients with non-small-cell lung carcinoma[J]. Clin Lung Cancer, 2019, 20(2):74-81.
    [41] Liu D, Offin M, Harnicar S, et al. Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors[J]. Ther Clin Risk Manag, 2018, 14:1247- 1252. doi: 10.2147/TCRM
    [42] Ardini E, Menichincheri M, Banfi P, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in multiple molecularly defined cancer indications[J]. Mol Cancer Ther, 2016, 15(4):628-639. doi: 10.1158/1535-7163.MCT-15-0758
    [43] Drilon A, Siena S, Ou SI, et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase i trials (ALKA-372-001 and STARTRK-1)[J]. Cancer Discov, 2017, 7(4):400-409. doi: 10.1158/2159-8290.CD-16-1237
    [44] Fujiwara Y, Takeda M, Yamamoto N, et al. Safety and pharmacokinetics of DS-6051b in Japanese patients with non- small cell lung cancer harboring ROS1 fusions: a phase I study[J]. Oncotarget, 2018, 9(34): 23729-23737. http://cn.bing.com/academic/profile?id=4f1af21c9e75df8df15782d70edebea7&encoded=0&v=paper_preview&mkt=zh-cn
    [45] Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired Crizotinib resistance in ALK-rearranged lung Cancers[J]. Sci Transl Med, 2012, 4(120):120ra17. doi: 10.1126-scitranslmed.3003316/
    [46] Gainor JF, Tseng D, Yoda S, et al. Patterns of metastatic spread and mechanisms of resistance to crizotinib in ROS1-Positive non-small-cell lung cancer[J]. JCO Precis Oncol, 2017[Epub 2017 Aug16].
    [47] Awad MM, Katayama R, McTigue M, et al. Acquired Resistance to Crizotinib from a Mutation in CD74-ROS1[J]. N Engl J Med, 2013, 368 (25):2395-2401. doi: 10.1056/NEJMoa1215530
    [48] Zhu K, Chen L, Han X, et al. Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells[J]. Oncol Rep, 2012, 27(4):1027- 1034. doi: 10.3892/or.2012.1633
    [49] Gou W, Zhou X, Liu Z, et al. CD74- ROS1 G2032R mutation transcriptionally up-regulates Twist1 in non-small cell lung cancer cells leading to increased migration, invasion, and resistance to Crizotinib[J]. Cancer Lett, 2018, 422:19-28. doi: 10.1016/j.canlet.2018.02.032
    [50] Shi L, Wang Y, Lu Z, et al. miR-127 promotes EMT and stem-like traits in lung cancer through a feed-forward regulatory loop[J]. Oncogene, 2017, 36(12):1631-1643. doi: 10.1038/onc.2016.332
    [51] Drilon A, Somwar R, Wagner JP, et al. A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy in a patient with ROS1-rearranged lung cancer[J]. Clin Cancer Res, 2016, 22(10): 2351-2358. doi: 10.1158/1078-0432.CCR-15-2013
    [52] Facchinetti F, Loriot Y, Kuo MS, et al. Crizotinib-resistant ROS1 mutations reveal a predictive kinase inhibitor sensitivity model for ROS1- and ALK-rearranged lung cancers[J]. Clin Cancer Res, 2016, 22(24): 5983-5991. doi: 10.1158/1078-0432.CCR-16-0917
    [53] Boland JM, Jang JS, Li J, et al. MET and EGFR mutations identified in ALKrearranged pulmonary adenocarcinoma: molecular analysis of 25 ALKpositive cases[J]. J Thorac Oncol, 2013, 8(5):574-581. doi: 10.1097/JTO.0b013e318287c395
    [54] Wang Z, Shi X, Li Y, et al. Blocking autophagy enhanced cytotoxicity induced by recombinant human arginase in triple- negative breast cancer cells[J]. Cell Death Dis, 2014, (5):e1563. http://cn.bing.com/academic/profile?id=57cbb6abb2dddb59615a831abc89e690&encoded=0&v=paper_preview&mkt=zh-cn
    [55] Han W, Pan H, Chen Y, et al. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells[J]. PLoS One, 2011, 6(6):e18691. doi: 10.1371/journal.pone.0018691
    [56] Lee J, Park CK, Yoon HK, et al. PD-L1 expression in ROS1 -rearranged non- small cell lung cancer: A study using simultaneous genotypic screening of EGFR, ALK, and ROS1[J]. Thorac Cancer, 2019, 10(1):103- 110.
    [57] Ye L, Leslie C, Jacques A, et al. Programmed death ligand-1 expression in non-small cell lung cancer in a western australian population and correlation with clinicopathologic features[J]. Mod Pathol, 2019, 32(4): 524-531. doi: 10.1038/s41379-018-0173-9
  • 加载中
表(1)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  54
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-16
  • 修回日期:  2019-03-29
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回