谷氨酰胺酶新型抑制剂及其抗肿瘤活性研究进展

廖英 冀林华 崔森

廖英, 冀林华, 崔森. 谷氨酰胺酶新型抑制剂及其抗肿瘤活性研究进展[J]. 中国肿瘤临床, 2019, 46(7): 366-369. doi: 10.3969/j.issn.1000-8179.2019.07.273
引用本文: 廖英, 冀林华, 崔森. 谷氨酰胺酶新型抑制剂及其抗肿瘤活性研究进展[J]. 中国肿瘤临床, 2019, 46(7): 366-369. doi: 10.3969/j.issn.1000-8179.2019.07.273
Liao Ying, Ji LinHua, Cui Sen. Research progress on the novel glutaminase inhibitor and its antitumor activity[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(7): 366-369. doi: 10.3969/j.issn.1000-8179.2019.07.273
Citation: Liao Ying, Ji LinHua, Cui Sen. Research progress on the novel glutaminase inhibitor and its antitumor activity[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(7): 366-369. doi: 10.3969/j.issn.1000-8179.2019.07.273

谷氨酰胺酶新型抑制剂及其抗肿瘤活性研究进展

doi: 10.3969/j.issn.1000-8179.2019.07.273
基金项目: 

国家人力资源社会保障部2017年度高层次留学人才回国项目 2017-200

详细信息
    作者简介:

    廖英  专业方向为血液病诊断与治疗。E-mail:543396578@qq.com

    通讯作者:

    崔森  13897284366@163.com

Research progress on the novel glutaminase inhibitor and its antitumor activity

Funds: 

the Ministry of Human Resources and Social Security for High-level Overseas Talents to Return to China in 2017 2017-200

More Information
  • 摘要: 肿瘤细胞利用各种代谢途径以满足增殖的能量和生物合成需求。除葡萄糖外,谷氨酰胺也是肿瘤细胞生长的重要前体物质及能量来源。谷氨酰胺酶(glutaminase,GSL)活性与Ras、c-Myc等癌基因以及Rho GTP酶相关。诸多临床前研究已证实谷氨酰胺酶抑制剂不仅具有抗肿瘤活性,还可以明显增强耐药肿瘤细胞对靶向药物的敏感性。目前新型GSL抑制剂CB-839已进入Ⅰ期临床试验,有望成为癌症治疗的新型药物。本文就谷氨酰胺代谢及其新型抑制剂抗肿瘤研究进展做一综述。

     

  • [1] Tarrado-Castellarnau M, de Atauri P, Cascante M. Oncogenic regulation of tumor metabolic reprogramming[J]. Oncotarget, 2016, 7(38):62726- 62753. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3384197
    [2] Damiani C, Colombo R, Gaglio D, et al. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect[J]. PLoS Comput Biol, 2017, 13(9): e1005758. doi: 10.1371/journal.pcbi.1005758
    [3] Choi YK, Park KG. Targeting glutamine metabolism for cancer treatment [J]. Biomol Ther (Seoul), 2018, 26(1):19-28. doi: 10.4062/biomolther.2017.178
    [4] Qu X, Sun J, Zhang Y, et al. c-Myc-driven glycolysis via TXNIP suppression is dependent on glutaminase-MondoA axis in prostate cancer [J]. Biochem Biophys Res Commun, 2018, 504(2):415-421. doi: 10.1016/j.bbrc.2018.08.069
    [5] Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway[J]. Nature, 2013, 496(7443):101-105. doi: 10.1038/nature12040
    [6] Wang JB, Erickson JW, Fuji R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation[J]. Cancer Cell, 2010, 18(3): 207-219. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216353521/
    [7] Katt WP, Lukey MJ, Cerione RA. A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis[J]. Future Med Chem, 2017, 9(2):223-243. doi: 10.4155/fmc-2016-0190
    [8] Liu J, Zhang C, Lin M, et al. Glutaminase 2 negatively regulates the PI3K/ AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma[J]. Oncotarget, 2014, 5(9):2635-2647. http://cn.bing.com/academic/profile?id=5b583471db9213c778401cca7987b78e&encoded=0&v=paper_preview&mkt=zh-cn
    [9] Ramachandran S, Pan CQ, Zimmermann SC, et al. Structural basis for exploring the allosteric inhibition of human kidney type glutaminase [J]. Oncotarget, 2016, 7(36):57943-57954. http://cn.bing.com/academic/profile?id=26b10c451b2e028282799b006e54748b&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Katt WP, Ramachandran S, Erickson JW, et al. Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation[J]. Mol Cancer Ther, 2012, 11(6):1269-1278. doi: 10.1158/1535-7163.MCT-11-0942
    [11] Le A, Lane AN, Hamaker M, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells[J]. Cell Metab, 2012, 15(1):110-121. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3345194
    [12] Thompson RM, Dytfeld D, Reyes L, et al. Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells[J]. Oncotarget, 2017, 8(22):35863-35876. http://cn.bing.com/academic/profile?id=230e0ea342ef4ebe1c55ccc8ea984bcf&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Bajpai R, Matulis SM, Wei C, et al. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax[J]. Oncogene, 2016, 35(30):3955-3964. doi: 10.1038/onc.2015.464
    [14] Lee JI, Kang J, Stipanuk MH. Differential regulation of glutamate-cysteine ligase subunit expression and increased holoenzyme formation in response to cysteine deprivation[J]. Biochem J, 2006, 393(Pt 1):181- 190. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1383676
    [15] van Geldermalsen M, Wang Q, Nagarajah R, et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basallike breast cancer[J]. Oncogene, 2016, 35(24):3201-3208. doi: 10.1038/onc.2015.381
    [16] Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing[J]. Nat Rev Mol Cell Biol, 2011, 12(1): 21-35. doi: 10.1038/nrm3025
    [17] Momcilovic M, Shackelford DB. Dual targeting of EGFR and glutaminase in lung cancer[J]. Mol Cell Oncol, 2018, 5(3):e1297883. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/23723556.2017.1297883
    [18] White E. Deconvoluting the context-dependent role for autophagy in cancer[J]. Nat Rev Cancer, 2012, 12(6):401-410. doi: 10.1038/nrc3262
    [19] Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6[J]. Nat Cell Biol, 2013, 15(4):406-416. doi: 10.1038/ncb2708
    [20] Dewaele M, Maes H, Agostinis P. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy[J]. Autophagy, 2010, 6(7):838-854. doi: 10.4161/auto.6.7.12113
    [21] Gross MI, Demo SD, Dennison JB, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer[J]. Mol Cancer Ther, 2014, 13(4):890-901. doi: 10.1158/1535-7163.MCT-13-0870
    [22] Peterse E, Niessen B, Addie RD, et al. Targeting glutaminolysis in chondrosarcoma in context of the IDH1/2 mutation[J]. Br J Cancer, 2018, 118(8):1074-1083. doi: 10.1038/s41416-018-0050-9
    [23] Molenaar RJ, Botman D, Smits MA, et al. Radioprotection of IDH1- mutated cancer cells by the IDH1-mutant inhibitor AGI-5198[J]. Cancer Res, 2015, 75(22):4790-4802. doi: 10.1158/0008-5472.CAN-14-3603
    [24] 沈伟涛, 魏婷.谷氨酰胺酶抑制剂CB-839对耐药小细胞肺癌细胞H69AR的杀伤作用研究[J].中国临床药理学杂志, 2018, 34(14):1641-1644. http://d.old.wanfangdata.com.cn/Periodical/zglcylxzz201814016
    [25] Comprehensive genomic characterization defines human glioblastoma genes and core pathways[J]. Nature, 2008, 455(7216): 1061-1068. https://www.nature.com/articles/nature07385
    [26] Tanaka K, Babic I, Nathanson D, et al. Oncogenic EGFR signaling activates an mTORC2-NF-kappaB pathway that promotes chemotherapy resistance[J]. Cancer Discov, 2011, 1(6):524-538. doi: 10.1158/2159-8290.CD-11-0124
    [27] Tanaka K, Sasayama T, Irino Y, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment[J]. J Clin Invest, 2015, 125(4):1591-1602. doi: 10.1172/JCI78239
    [28] Guo L, Zhou B, Liu Z, et al. Blockage of glutaminolysis enhances the sensitivity of ovarian cancer cells to PI3K/mTOR inhibition involvement of STAT3 signaling[J]. Tumour Biol, 2016, 37(8):11007-11015. doi: 10.1007/s13277-016-4984-3
    [29] Momcilovic M, Bailey ST, Lee JT, et al. Targeted Inhibition of EGFR and Glutaminase Induces Metabolic Crisis in EGFR Mutant Lung Cancer[J]. Cell Rep, 2017, 18(3):601-610. doi: 10.1016/j.celrep.2016.12.061
    [30] Gregory MA, Nemkov T, Reisz JA, et al. Glutaminase inhibition improves FLT3 inhibitor therapy for acute myeloid leukemia[J]. Exp Hematol, 2018, 58:52-58. doi: 10.1016/j.exphem.2017.09.007
    [31] Gallipoli P, Giotopoulos G, Tzelepis K, et al. Glutaminolysis is a metabolic dependency in FLT3(ITD) acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition[J]. Blood, 2018, 131(15):1639-1653. doi: 10.1182/blood-2017-12-820035
    [32] Sheikh TN, Patwardhan PP, Cremers S, et al. Targeted inhibition of glutaminase as a potential new approach for the treatment of NF1 associated soft tissue malignancies[J]. Oncotarget, 2017, 8(55):94054- 94068. http://cn.bing.com/academic/profile?id=a4feffbb1df1cef09b2f5cbc663e53c2&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  167
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-18
  • 修回日期:  2019-04-18
  • 刊出日期:  2019-04-15

目录

    /

    返回文章
    返回