胰腺癌抑制性免疫微环境促进肿瘤细胞化疗耐药的研究进展

周怡章 郭肖凡 陈志强 高松

周怡章, 郭肖凡, 陈志强, 高松. 胰腺癌抑制性免疫微环境促进肿瘤细胞化疗耐药的研究进展[J]. 中国肿瘤临床, 2019, 46(18): 969-973. doi: 10.3969/j.issn.1000-8179.2019.18.877
引用本文: 周怡章, 郭肖凡, 陈志强, 高松. 胰腺癌抑制性免疫微环境促进肿瘤细胞化疗耐药的研究进展[J]. 中国肿瘤临床, 2019, 46(18): 969-973. doi: 10.3969/j.issn.1000-8179.2019.18.877
Zhou Yizhang, Guo Xiaofan, Chen Zhiqiang, Gao Song. Influence of the immunosuppressive microenvironment in pancreatic cancer on chemoresistance[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(18): 969-973. doi: 10.3969/j.issn.1000-8179.2019.18.877
Citation: Zhou Yizhang, Guo Xiaofan, Chen Zhiqiang, Gao Song. Influence of the immunosuppressive microenvironment in pancreatic cancer on chemoresistance[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 46(18): 969-973. doi: 10.3969/j.issn.1000-8179.2019.18.877

胰腺癌抑制性免疫微环境促进肿瘤细胞化疗耐药的研究进展

doi: 10.3969/j.issn.1000-8179.2019.18.877
详细信息
    作者简介:

    周怡章  专业方向为胰腺癌基础与临床转化。E-mail:zhouyizhang@tmu.edu

    通讯作者:

    高松  foxgao2004@163.com

Influence of the immunosuppressive microenvironment in pancreatic cancer on chemoresistance

Funds: 

the National Natural Science Foundation of China General Program 81672435

More Information
  • 摘要: 胰腺癌微环境中存在多种免疫抑制细胞,表达不同的细胞因子抑制机体的免疫杀伤功能,在肿瘤发展中发挥重要的作用。这些细胞还能影响化疗药物杀伤肿瘤细胞的功能,促进肿瘤细胞耐药。吉西他滨、白蛋白结合型紫杉醇等胰腺癌一线化疗药物不仅可直接抑制肿瘤细胞增殖,还可作用于免疫细胞间接增强抗肿瘤作用。相反,化疗药物也能增强免疫抑制细胞功能,诱导耐药,促进肿瘤进展。本文就胰腺癌微环境的免疫抑制状态,及其与化疗药物之间作用机制做一综述,旨在从肿瘤免疫微环境的角度优化现有的化疗策略。

     

  • [1] 杨军, 李贺, 郑荣寿, 等.2014年中国胰腺癌发病与死亡分析[J].中华肿瘤, 2018, 27(6):420-425. http://d.old.wanfangdata.com.cn/Periodical/zgzl201806005
    [2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1):7-34. doi: 10.3322/caac.21551
    [3] Griesmann H, Drexel C, Milosevic N, et al. Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer[J]. Gut, 2017, 66(7):1278-1285. doi: 10.1136/gutjnl-2015-310049
    [4] 中国抗癌协会胰腺癌专业委员会.胰腺癌综合诊治指南(2018版)[J].中华外科杂志, 2018, 56(7):481-491. http://d.old.wanfangdata.com.cn/Periodical/zhwk201807001
    [5] Galluzzi L, Buqué A, Kepp O, et al. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents[J]. Cancer Cell, 2015, 28(6):690-714. doi: 10.1016/j.ccell.2015.10.012
    [6] Martinez-Bosch N, Vinaixa J, Navarro P. Immune Evasion in Pancreatic Cancer:From Mechanisms to Therapy[J]. Cancers, 2018, 10(1):6. doi: 10.3390/cancers10010006
    [7] Liu J, Jiang W, Zhao K, et al. Tumoral EHF predicts the efficacy of anti-PD1 therapy in pancreatic ductal adenocarcinoma[J]. J Exp Med, 2019, 216(3):656-673. doi: 10.1084/jem.20180749
    [8] Clark CE, Hingorani SR, Mick R, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion[J]. Cancer Res, 2007, 67(19):9518-9527. doi: 10.1158/0008-5472.CAN-07-0175
    [9] Seo YD, Pillarisetty VG. T-cell programming in pancreatic adenocarcinoma:a review[J]. Cancer gene therapy, 2017, 24(3):106-113. doi: 10.1038/cgt.2016.66
    [10] Ino Y, Yamazaki-Itoh R, Shimada K, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer[J]. Bri J Cancer, 2013, 108(4):914-923. doi: 10.1038/bjc.2013.32
    [11] Di Caro G, Cortese N, Castino GF, et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy[J]. Gut, 2016, 65(10):1710-1720. doi: 10.1136/gutjnl-2015-309193
    [12] Kumar V, Patel S, Tcyganov E, et al. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment[J]. Trends Immunol, 2016, 37(3):208-220. doi: 10.1016/j.it.2016.01.004
    [13] Pergamo M, Miller G. Myeloid-derived suppressor cells and their role in pancreatic cancer[J]. Cancer Gene Ther, 2017, 24(3):100-105. doi: 10.1038/cgt.2016.65
    [14] Amedei A, Niccolai E, Prisco D. Pancreatic cancer:role of the immune system in cancer progression and vaccine-based immunotherapy[J]. Hum Vacc Immunother, 2014, 10(11):3354-3368. doi: 10.4161/hv.34392
    [15] Tremble LF, Forde PF, Soden DM. Clinical evaluation of macrophages in cancer:role in treatment, modulation and challenges[J]. Cancer Immunol Immunother, 2017, 66(12):1509-1527. doi: 10.1007/s00262-017-2065-0
    [16] Ye H, Zhou Q, Zheng S, et al. Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma[J]. Cell Death Dis, 2018, 9(5):453-471. doi: 10.1038/s41419-018-0486-0
    [17] Kuwada K, Kagawa S, Yoshida R, et al. The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer[J]. J Exp Clin Cancer Res, 2018, 37(1):307. doi: 10.1186/s13046-018-0981-2
    [18] Nywening TM, Belt BA, Cullinan DR, et al. Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma[J]. Gut, 2018, 67(6):1112-1123. doi: 10.1136/gutjnl-2017-313738
    [19] Eriksson E, Wenthe J, Irenaeus S, et al. Gemcitabine reduces MDSCs, tregs and TGFbeta-1 while restoring the teff/treg ratio in patients with pancreatic cancer[J]. J Transl Med, 2016, 14(1):282. doi: 10.1186/s12967-016-1037-z
    [20] Zhang Y, Velez-Delgado A, Mathew E, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer[J]. Gut, 2017, 66(1):124-136. doi: 10.1136/gutjnl-2016-312078
    [21] Stromnes I M, Brockenbrough JS, Izeradjene K, et al. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity[J]. Gut, 2014, 63(11):1769-1781. doi: 10.1136/gutjnl-2013-306271
    [22] Pickup MW, Owens P, Gorska AE, et al. Development of Aggressive Pancreatic Ductal Adenocarcinomas Depends on Granulocyte Colony Stimulating Factor Secretion in Carcinoma Cells[J]. Cancer Immunol Res, 2017, 5(9):718-729. doi: 10.1158/2326-6066.CIR-16-0311
    [23] Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence:the potential role of myeloid-derived suppressor cells (MDSC) in agerelated immune deficiency[J]. Cell Mol Life Sci, 2019, 76(10):1901-1918. doi: 10.1007/s00018-019-03048-x
    [24] Fan K, Yang C, Fan Z, et al. MUC16 C terminal-induced secretion of tumor-derived IL-6 contributes to tumor-associated Treg enrichment in pancreatic cancer[J]. Cancer Lett, 2018, 418167-418175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c9433032060e5d6c0b6bbbb83f38694
    [25] Wang X, Lang M, Zhao T, et al. Cancer-FOXP3 directly activated CCL5 to recruit FOXP3(+)Treg cells in pancreatic ductal adenocarcinoma[J]. Oncogene, 2017, 36(21):3048-3058. doi: 10.1038/onc.2016.458
    [26] Bengsch F, Knoblock DM, Liu A, et al. CTLA-4/CD80 pathway regulates T cell infiltration into pancreatic cancer[J]. Cancer Immunol Immunother, 2017, 66(12):1609-1617. doi: 10.1007/s00262-017-2053-4
    [27] Das S, Bar-Sagi D. BTK signaling drives CD1d(hi)CD5(+) regulatory Bcell differentiation to promote pancreatic carcinogenesis[J]. Oncogene, 2019, 38(17):3316-3324. doi: 10.1038/s41388-018-0668-3
    [28] Rosser EC, Mauri C. Regulatory B cells:origin, phenotype, and function[J]. Immunity, 2015, 42(4):607-612. doi: 10.1016/j.immuni.2015.04.005
    [29] Chang JH, Jiang Y, Pillarisetty VG. Role of immune cells in pancreatic cancer from bench to clinical application:An updated review[J]. Medicine (Baltimore), 2016, 95(49):e5541. doi: 10.1097/MD.0000000000005541
    [30] Gürlevik E, Fleischmann-Mundt B, Brooks J, et al. Administration of gemcitabine after pancreatic tumor resection in mice induces an antitumor immune response mediated by natural killer cells[J]. Gastroenterology, 2016, 151(2):338-350.e337. doi: 10.1053/j.gastro.2016.05.004
    [31] Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses[J]. Cancer Res, 2013, 73(3):1128-1141. doi: 10.1158/0008-5472.CAN-12-2731
    [32] Liu Q, Li Y, Niu Z, et al. Atorvastatin (Lipitor) attenuates the effects of aspirin on pancreatic cancerogenesis and the chemotherapeutic efficacy of gemcitabine on pancreatic cancer by promoting M2 polarized tumor associated macrophages[J]. J Exp Clinical Cancer Res, 2016, 35(1):33. doi: 10.1186/s13046-016-0304-4
    [33] Cappello P, Curcio C, Mandili G, et al. Next Generation Immunotherapy for Pancreatic Cancer:DNA Vaccination is Seeking New Combo Partners[J]. Cancers (Basel). 2018, 10(2):pii:E51. doi: 10.3390/cancers10020051.
    [34] Seifert L, Werba G, Tiwari S, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression[J]. Nature, 2016, 532(7598):245-249. doi: 10.1038/nature17403
    [35] Deshmukh SK, Tyagi N, Khan MA, et al. Gemcitabine treatment promotes immunosuppressive microenvironment in pancreatic tumors by supporting the infiltration, growth, and polarization of macrophages[J]. Sci Rep, 2018, 8(1):12000. doi: 10.1038/s41598-018-30437-2
    [36] Takeuchi S, Baghdadi M, Tsuchikawa T, et al. Chemotherapy-Derived Inflammatory Responses Accelerate the Formation of Immunosuppressive Myeloid Cells in the Tissue Microenvironment of Human Pancreatic Cancer[J]. Cancer Res, 2015, 75(13):2629-2640. doi: 10.1158/0008-5472.CAN-14-2921
    [37] Cullis J, Siolas D, Avanzi A, et al. Macropinocytosis of Nab-paclitaxel Drives Macrophage Activation in Pancreatic Cancer[J]. Cancer Immunol Res, 2017, 5(3):182-190. doi: 10.1158/2326-6066.CIR-16-0125
    [38] Hidalgo M, Plaza C, Musteanu M, et al. SPARC Expression Did Not Predict Efficacy of nab-Paclitaxel plus Gemcitabine or Gemcitabine Alone for Metastatic Pancreatic Cancer in an Exploratory Analysis of the Phase Ⅲ MPACT Trial[J]. Clin Cancer Res, 2015, 21(21):4811-4818. doi: 10.1158/1078-0432.CCR-14-3222
    [39] Kim H, Samuel S, Lopez-Casas P, et al. SPARC-Independent delivery of nab-paclitaxel without depleting tumor stroma in patient-derived pancreatic cancer xenografts[J]. Mol Cancer Ther, 2016, 15(4):680-688. doi: 10.1158/1535-7163.MCT-15-0764
    [40] Davis M, Conlon K, Bohac GC, et al. Effect of pemetrexed on innate immune killer cells and adaptive immune T cells in subjects with adenocarcinoma of the pancreas[J]. J Immunother, 2012, 35(8):629-640. doi: 10.1097/CJI.0b013e31826c8a4f
    [41] Yardley DA. nab-Paclitaxel mechanisms of action and delivery[J]. J Control Release, 2013, 170(3):365-372. doi: 10.1016/j.jconrel.2013.05.041
    [42] Binenbaum Y, Fridman E, Yaari Z, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma[J]. Cancer Res, 2018, 78(18):5287-5299. doi: 10.1158/0008-5472.CAN-18-0124
    [43] Weizman N, Krelin Y, Shabtay-Orbach A, et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase[J]. Oncogene, 2014, 33(29):3812-3819. doi: 10.1038/onc.2013.357
    [44] Xian G, Zhao J, Qin C, et al. Simvastatin attenuates macrophage-mediated gemcitabine resistance of pancreatic ductal adenocarcinoma by regulating the TGF-beta1/Gfi-1 axis[J]. Cancer Lett, 2017, 38565-38574. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a3a28f7d6ce6f0e1f61bedeadf16dc4
    [45] Ireland L, Santos A, Ahmed MS, et al. Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors[J]. Cancer Res, 2016, 76(23):6851-6863. doi: 10.1158/0008-5472.CAN-16-1201
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  4
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-02
  • 刊出日期:  2019-09-30

目录

    /

    返回文章
    返回