近红外荧光成像技术在外科手术中的研究进展

刘丹丹 罗林 崔永言

刘丹丹, 罗林, 崔永言. 近红外荧光成像技术在外科手术中的研究进展[J]. 中国肿瘤临床, 2020, 47(6): 318-321. doi: 10.3969/j.issn.1000-8179.2020.06.194
引用本文: 刘丹丹, 罗林, 崔永言. 近红外荧光成像技术在外科手术中的研究进展[J]. 中国肿瘤临床, 2020, 47(6): 318-321. doi: 10.3969/j.issn.1000-8179.2020.06.194
Liu Dandan, Luo Lin, Cui Yongyan. Research progress of near-infrared fluorescence imaging technology in surgery[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(6): 318-321. doi: 10.3969/j.issn.1000-8179.2020.06.194
Citation: Liu Dandan, Luo Lin, Cui Yongyan. Research progress of near-infrared fluorescence imaging technology in surgery[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(6): 318-321. doi: 10.3969/j.issn.1000-8179.2020.06.194

近红外荧光成像技术在外科手术中的研究进展

doi: 10.3969/j.issn.1000-8179.2020.06.194
详细信息
    作者简介:

    刘丹丹  专业方向为近红外荧光实时引导皮肤肿瘤切除等。E-mail:liudandan4674@163.com

    通讯作者:

    崔永言  cyy8188@163.com

Research progress of near-infrared fluorescence imaging technology in surgery

More Information
  • 摘要: 作为术中导航的新兴领域,近红外荧光(near-infrared fluorescence,NIRF)成像技术能借助荧光探针对特定的生物组织进行显像,从而在外科手术中实时获取血管、淋巴管和特定组织的视觉信息,从而发现传统方法无法识别的微小灶,正确显示肿瘤切缘,帮助外科医生进行术中决策。该技术由于其操作简单,快速实时,安全无害,具有良好的应用前景。本文将就NIRF成像技术的基本原理,在实时引导肿瘤切除,前哨淋巴结定位,保护正常解剖结构等方面的临床进展进行综述,并且讨论了该技术的局限性和优势并展望其应用前景。

     

  • [1] Vahrmeijer AL, Hutteman M, van der Vorst JR, et al. Image-guided cancer surgery using near-infrared fluorescence[J]. Nat Rev Clin Oncol, 2013, 10(9):507-518. doi: 10.1038/nrclinonc.2013.123
    [2] Papayan G, Akopov A. Potential of indocyanine green near-infrared fluorescence imaging in experimental and clinical practice[J]. Photodiagnosis Photodyn Ther, 2018, 24:292-299. doi: 10.1016/j.pdpdt.2018.10.011
    [3] Handgraaf HJ, Verbeek FP, Tummers QR, et al. Real-time near-infrared fluorescence guided surgery in gynecologic oncology:a review of the current state of the art[J]. Gynecol Oncol, 2014, 135(3):606-613. doi: 10.1016/j.ygyno.2014.08.005
    [4] Vuijk FA, Hilling DE, Mieog JSD, et al. Fluorescent-guided surgery for sentinel lymph node detection in gastric cancer and carcinoembryonic antigen targeted fluorescent-guided surgery in colorectal and pancreatic cancer[J]. J Surg Oncol, 2018, 118(2):315-323. doi: 10.1002/jso.25139
    [5] Favril S, Abma E, Blasi F, et al. Clinical use of organic near-infrared fluorescent contrast agents in image-guided oncologic procedures and its potential in veterinary oncology[J]. Vet Rec, 2018, 183(11):354. doi: 10.1136/vr.104851
    [6] Keereweer S, Mieog JS, Mol IM, et al. Detection of oral squamous cell carcinoma and cervical lymph node metastasis using activatable near-infrared fluorescence agents[J]. Arch Otolaryngol Head Neck Surg, 2011, 137(6):609-615. doi: 10.1001/archoto.2011.89
    [7] Scheuer W, van Dam GM, Dobosz M, et al. Drug-based optical agents:infiltrating clinics at lower risk[published correction appears in Sci Transl Med[J]. Sci Transl Med, 2012, 4(134):134.
    [8] Slooter MD, Janssen A, Bemelman WA, et al. Currently available and experimental dyes for intraoperative near-infrared fluorescence imaging of the ureters:a systematic review[J]. Tech Coloproctol, 2019, 23(4):305-313. doi: 10.1007/s10151-019-01973-4
    [9] Frangioni JV. Translating in vivo diagnostics into clinical reality[J]. Nat Biotechnol, 2006, 24(8):909-913. doi: 10.1038/nbt0806-909
    [10] Verbeek FP, van der Vorst JR, Schaafsma BE, et al. Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light[J]. J Hepatobiliary Pancreat Sci, 2012, 19(6):626-637. doi: 10.1007/s00534-012-0534-6
    [11] Barabino G, Klein JP, Porcheron J, et al. Intraoperative Near-Infrared Fluorescence Imaging using indocyanine green in colorectal carcinomatosis surgery:Proof of concept[J]. Eur J Surg Oncol, 2016, 42(12):1931-1937. doi: 10.1016/j.ejso.2016.06.389
    [12] Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review[J]. J Control Release, 2000, 65(1-2):271-284. doi: 10.1016/S0168-3659(99)00248-5
    [13] Ishizawa T, Fukushima N, Shibahara J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging.[J]. Cancer, 2009, 115(11):2491-2504. doi: 10.1002/cncr.24291
    [14] Uchiyama K, Ueno M, Ozawa S, et al. Combined use of contrast-enhanced intraoperative ultrasonography and a fluorescence navigation system for identifying hepatic metastases[J]. World J Surg, 2010, 34(12):2953-2959. doi: 10.1007/s00268-010-0764-1
    [15] Handgraaf HJM, Boogerd LSF, Höppener DJ, et al. Long-term followup after near-infrared fluorescence-guided resection of colorectal liver metastases:A retrospective multicenter analysis[J]. Eur J Surg Oncol, 2017, 43(8):1463-1471. doi: 10.1016/j.ejso.2017.04.016
    [16] Peloso A, Franchi E, Canepa MC, et al. Combined use of intraoperative ultrasound and indocyanine green fluorescence imaging to detect liver metastases from colorectal cancer[J]. Hpb, 2013, 15(12):928-934. doi: 10.1111/hpb.12057
    [17] Boogerd LSF, Handgraaf HJM, Lam HD, et al. Laparoscopic detection and resection of occult liver tumors of multiple cancer types using real-time near-infrared fluorescence guidance[J]. Surg Endosc, 2017, 31(2):952-961. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fffe4b0a59e352c8795e73bb2cf3ada5
    [18] Miyata A, Ishizawa T, Kamiya M, et al. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging[J]. PLoS One, 2014, 9(11):e112667. doi: 10.1371/journal.pone.0112667
    [19] Nakaseko Y, Ishizawa T, Saiura A. Fluorescence-guided surgery for liver tumors[J]. J Surg Oncol, 2018, 118(2):324-331. doi: 10.1002/jso.25128
    [20] Keating J, Tchou J, Okusanya O, et al. Identification of breast cancer margins using intraoperative near-infrared imaging[J]. J Surg Oncol, 2016, 113(5):508-514. doi: 10.1002/jso.24167
    [21] Tummers QR, Verbeek FP, Prevoo HA, et al. First experience on laparoscopic near-infrared fluorescence imaging of hepatic uveal melanoma metastases using indocyanine green[J]. Surg Innov, 2015, 22(1):20-25. doi: 10.1177/1553350614535857
    [22] Mansel RE, Fallowfield L, Kissin M, et al. Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer:the ALMANAC Trial[J]. J Natl Cancer Inst, 2006, 98(9):599-609. doi: 10.1093/jnci/djj158
    [23] van der Vorst JR, Schaafsma BE, Verbeek FPR, et al. Dose optimization for near-infrared fluorescence sentinel lymph node mapping in patients with melanoma[J]. Br J Dermatol, 2013, 168(1):93-98. doi: 10.1111/bjd.12059
    [24] Samorani D, Fogacci T, Panzini I, et al. The use of indocyanine green to detect sentinel nodes in breast cancer:a prospective study[J]. Eur J Surg Oncol, 2015, 41(1):64-70. doi: 10.1016/j.ejso.2014.10.047
    [25] Emile SH, Elfeki H, Shalaby M, et al. Sensitivity and specificity of indocyanine green near-infrared fluorescence imaging in detection of metastatic lymph nodes in colorectal cancer:Systematic review and meta-analysis[J]. J Surg Oncol, 2017, 116(6):730-740. doi: 10.1002/jso.24701
    [26] Kinami S, Oonishi T, Fujita J, et al. Optimal settings and accuracy of indocyanine green fluorescence imaging for sentinel node biopsy in early gastric cancer[J]. Oncol Lett, 2016, 11(6):4055-4062. doi: 10.3892/ol.2016.4492
    [27] Zhou Y, Li Y, Mao F, et al. Preliminary study of contrast-enhanced ultrasound in combination with blue dye vs. indocyanine green fluorescence, in combination with blue dye for sentinel lymph node biopsy in breast cancer[J]. BMC Cancer, 2019, 19(1):939. doi: 10.1186/s12885-019-6165-4
    [28] Knackstedt R, Couto RA, Ko J, et al. Indocyanine green fluorescence imaging with lymphoscintigraphy for sentinel node biopsy in melanoma:increasing the sentinel lymph node-positive rate[J]. Ann Surg Oncol, 2019, 26(11):3550-3560. doi: 10.1245/s10434-019-07617-z
    [29] Villegas-Tovar E, Jimenez-Lillo J, Jimenez-Valerio V, et al. Performance of Indocyanine green for sentinel lymph node mapping and lymph node metastasis in colorectal cancer:a diagnostic test accuracy meta-analysis[J]. Surg Endosc, 2020, 34(3):1035-1047. http://cn.bing.com/academic/profile?id=af84ab598b0a40a029bdd026a4efaf7d&encoded=0&v=paper_preview&mkt=zh-cn
    [30] Plante M, Touhami O, Trinh XB, et al. Sentinel node mapping with indocyanine green and endoscopic near-infrared fluorescence imaging in endometrial cancer. A pilot study and review of the literature[J]. Gynecol Oncol, 2015, 137(3):443-447. doi: 10.1016/j.ygyno.2015.03.004
    [31] Osayi SN, Wendling MR, Drosdeck JM, et al. Near-infrared fluorescent cholangiography facilitates identification of biliary anatomy during laparoscopic cholecystectomy[J]. Surgical Endoscopy, 2015, 29(2):368-375. doi: 10.1007/s00464-014-3677-5
    [32] Scroggie DL, Jones C. Fluorescent imaging of the biliary tract during laparoscopic cholecystectomy[J]. Ann Surg Innov Res, 2014, 8(1):5. doi: 10.1186/s13022-014-0005-7
    [33] Ahmad A. Use of indocyanine green (ICG) augmented near-infrared fluorescence imaging in robotic radical resection of gallbladder adenocarcinomas[J]. Surg Endosc, 2019:1-5. http://cn.bing.com/academic/profile?id=d913bc429326df4d73a55c9618afd6ff&encoded=0&v=paper_preview&mkt=zh-cn
    [34] Sandanaraj BS, Gremlich HU, Kneuer R, et al. Fluorescent nanoprobes as a biomarker for increased vascular permeability:implications in diagnosis and treatment of cancer and inflammation[J]. Bioconjug Chem, 2010, 21(1):93-101. doi: 10.1021/bc900311h
    [35] Atallah I, Milet C, Coll J L, et al. Role of near-infrared fluorescence imaging in head and neck cancer surgery:from animal models to humans[J]. Eur Arch Otorhinolaryngol, 2015, 272(10):2593-2600. doi: 10.1007/s00405-014-3224-y
    [36] Namikawa T, Sato T, Hanazaki K. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green[J]. Surg Today, 2015, 45(12):1467-1474. doi: 10.1007/s00595-015-1158-7
  • 加载中
计量
  • 文章访问数:  245
  • HTML全文浏览量:  18
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-03
  • 刊出日期:  2020-12-26

目录

    /

    返回文章
    返回