非小细胞肺癌中MET抑制剂的耐药机制及应对策略研究进展

韩森 马旭 方健

韩森, 马旭, 方健. 非小细胞肺癌中MET抑制剂的耐药机制及应对策略研究进展[J]. 中国肿瘤临床, 2020, 47(10): 535-540. doi: 10.3969/j.issn.1000-8179.2020.10.441
引用本文: 韩森, 马旭, 方健. 非小细胞肺癌中MET抑制剂的耐药机制及应对策略研究进展[J]. 中国肿瘤临床, 2020, 47(10): 535-540. doi: 10.3969/j.issn.1000-8179.2020.10.441
Han Sen, Ma Xu, Fang Jian. Research progress on the mechanism of resistance to MET inhibitors in non-small cell lung cancer and review of MET inhibitor resistance-related strategies[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(10): 535-540. doi: 10.3969/j.issn.1000-8179.2020.10.441
Citation: Han Sen, Ma Xu, Fang Jian. Research progress on the mechanism of resistance to MET inhibitors in non-small cell lung cancer and review of MET inhibitor resistance-related strategies[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(10): 535-540. doi: 10.3969/j.issn.1000-8179.2020.10.441

非小细胞肺癌中MET抑制剂的耐药机制及应对策略研究进展

doi: 10.3969/j.issn.1000-8179.2020.10.441
基金项目: 

北京大学肿瘤医院科学研究基金项目 2020-27

详细信息
    作者简介:

    韩森  专业方向为肿瘤内科的临床及基础研究。E-mail:handsomehansen2@126.com

    通讯作者:

    方健  fangjian5555@163.com

Research progress on the mechanism of resistance to MET inhibitors in non-small cell lung cancer and review of MET inhibitor resistance-related strategies

Funds: 

This wrok was supported by Science Foundation of Peking University Cancer Hospital 2020-27

More Information
  • 摘要: MET基因是非小细胞肺癌的重要肿瘤驱动基因,针对MET 14外显子跳跃突变的靶向药物为患者带来新的治疗希望。虽然以tepotinib和沃利替尼等为代表的MET抑制剂显示出良好的抗肿瘤效果,但MET抑制剂的耐药不可避免。通过对HGF/MET信号通路的研究,不仅有助于探索MET抑制剂的耐药机制,有利于找到抑制和逆转耐药的方法,而且能够扩大新药研发的领域。初步研究显示HGF/MET信号通路抑制剂与其他药物的联合应用可能具有更大的临床应用潜力。本文就MET基因异常的特点,MET抑制剂的耐药机制和应对耐药策略进行综述,并提出MET抑制剂未来的发展方向和面临的挑战。

     

  • 图  1  HGF/MET信号通路及MET 14外显子跳跃突变

    图  2  MET抑制剂的耐药机制及其应对策略

  • [1] Joshua K, Fernando S, Isabella B, et al. Changing the therapeutic landscape in non- small cell lung cancers:the evolution of comprehensive molecular profiling improves access to therapy[J]. Curr Oncol Rep, 2017, 19(4):24. doi: 10.1007/s11912-017-0587-4
    [2] Anne S, Giorgio V, Paul A, et al. Scientific advances in lung cancer 2015[J]. J Thorac Oncol, 2016, 11(5):613-638. doi: 10.1016/j.jtho.2016.03.012
    [3] Reungwetwattana T, Liang Y, Zhu V, et al. The race to target MET exon 14 skipping alterations in non-small cell lung cancer:The why, the how, the who, the unknown, and the inevitable[J]. Lung Cancer, 2017, 103:27-37. doi: 10.1016/j.lungcan.2016.11.011
    [4] Nele V, Elisa G, Patrick P, et al. cMET Exon 14 Skipping:From the Structure to the Clinic[J]. J Thorac Oncol, 2016, 11(9):1423-1432. doi: 10.1016/j.jtho.2016.05.005
    [5] Organ S, Tsao M. An overview of the c-MET signaling pathway[J]. Ther Adv Med Oncol, 2011, 3(Suppl 1):S7-S19. https://www.ncbi.nlm.nih.gov/pubmed/22128289
    [6] Moosavi F, Giovannetti E, Saso L, et al. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers[J]. Crit Rev Clin Lab Sci, 2019, 56(8):533-566. doi: 10.1080/10408363.2019.1653821
    [7] Gow C, Hsieh M, Wu S, et al. A comprehensive analysis of clinical outcomes in lung cancer patients harboring a MET exon 14 skipping mutation compared to other driver mutations in an East Asian population[J]. Lung Cancer, 2017, 103:82-89. doi: 10.1016/j.lungcan.2016.12.001
    [8] Heist R, Shim H, Gingipally S, et al. MET exon 14 skipping in non-small cell lung cancer[J]. Oncologist, 2016, 21(4):481-486. doi: 10.1634/theoncologist.2015-0510
    [9] Cortot AB, Kherrouche Z, Descarpentries C, et al. Exon 14 deleted MET receptor as a new biomarker and target in cancers[J]. J Natl Cancer Inst, 2017, 109(5):262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81890cc5f28d01a1dad506429618ca32
    [10] Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors[J]. Cancer Discov, 2015, 5(8):850-859. doi: 10.1158/2159-8290.CD-15-0285
    [11] Tong JH, Yeung SF, Chan AWH, et al. MET amplification and exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis[J]. Clin Cancer Res, 2016, 22(12):3048-3056. doi: 10.1158/1078-0432.CCR-15-2061
    [12] Kawakami H, Okamoto I, Okamoto W, et al. Targeting MET amplification as a new oncogenic driver[J]. Cancers (Basel), 2014, 6(3):1540-1552. doi: 10.3390/cancers6031540
    [13] Schildhaus HU, Schultheis AM, Rüschoff J, et al. MET amplification status in therapy-naive adeno- and squamous cell carcinomas of the lung[J]. Clin Cancer Res, 2015, 21(4):907-915. doi: 10.1158/1078-0432.CCR-14-0450
    [14] Drilon A, Cappuzzo F, Ou SH, et al. Targeting MET in lung cancer:will expectations finally be MET?[J]. J Thorac Oncol, 2017, 12(1):15-26. doi: 10.1016/j.jtho.2016.10.014
    [15] Engelman J, Zejnullahu K, Mitsudomi K, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling[J]. Science, 2007, 316(5827):1039-1043. doi: 10.1126/science.1141478
    [16] Zhang N, Xie F, Gao W, et al. Expression of hepatocyte growth factor and c- Met in non- small- cell lung cancer and association with lymphangiogenesis[J]. Mol Med Rep, 2015, 11(4):2797-2804. doi: 10.3892/mmr.2014.3071
    [17] Yeung SF, Tong JHM, Law PPW, et al. Profiling of oncogenic driver events in lung adenocarcinoma revealed MET mutation as independent prognostic factor[J]. J Thorac Oncol, 2015, 10(9):1292-1300. doi: 10.1097/JTO.0000000000000620
    [18] Gherardi E, Birchmeier W, Birchmeier C, et al. Targeting MET in cancer:rationale and progress[J]. Nat Rev Cancer, 2012, 12(2):89-103. doi: 10.1038/nrc3205
    [19] Tarhini AA, Rafique I, Floros T, et al. Phase 1/2 study of rilotumumab (AMG 102), a hepatocyte growth factor inhibitor, and erlotinib in patients with advanced non-small cell lung cancer[J]. Cancer, 2017, 123(15):2936-2944. doi: 10.1002/cncr.30717
    [20] Mok TSK, Sarayut LG, SU WC, et al. A randomized phase 2 study comparing the combination of ficlatuzumab and gefitinib with gefitinib alone in asian patients with advanced stage pulmonary adenocarcinoma[J]. J Thorac Oncol, 2016, 11(10):1736-1744. doi: 10.1016/j.jtho.2016.05.038
    [21] Okamoto W, Okamoto I, Tanaka K, et al. TAK- 701, a humanized monoclonal antibody to hepatocyte growth factor, reverses gefitinib resistance induced by tumor-derived HGF in non-small cell lung cancer with an EGFR mutation[J]. Mol Cancer Ther, 2010, 9(10):2785-2792. doi: 10.1158/1535-7163.MCT-10-0481
    [22] Qi J, McTigue MA, Rogers A, et al. Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors[J]. Cancer Res, 2011, 71(3):1081-1091. doi: 10.1158/0008-5472.CAN-10-1623
    [23] Tiedt R, Degenkolbe E, Furet P, et al. A drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients[J]. Cancer Res, 2011, 71(15):5255-5264. doi: 10.1158/0008-5472.CAN-10-4433
    [24] Fujino T, Kobayashi Y, Suda K, et al. Sensitivity and resistance of MET exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro[J]. J Thorac Oncol, 2019, 14(10):1753-1765. doi: 10.1016/j.jtho.2019.06.023
    [25] Jamme P, Fernandes M, Copin MC, et al. Alterations in the PI3K pathway drive resistance to MET inhibitors in NSCLC harboring MET exon 14 skipping mutations[J]. J Thorac Oncol, 2020, 15(5):741-751. doi: 10.1016/j.jtho.2020.01.027
    [26] Dong HJ, Li P, Wu CL, et al. Response and acquired resistance to crizotinib in Chinese patients with lung adenocarcinomas harboring MET Exon 14 splicing alternations[J]. Lung Cancer, 2016, 102:118-121. doi: 10.1016/j.lungcan.2016.11.006
    [27] Heist RS, Sequist LV, Borger D, et al. Acquired resistance to crizotinib in NSCLC with MET exon 14 skipping[J]. J Thorac Oncol, 2016, 11(8):1242-1245. doi: 10.1016/j.jtho.2016.06.013
    [28] Ou SI, Young L, Schrock AB, et al. Emergence of preexisting MET Y1230C mutation as a resistance mechanism to crizotinib in NSCLC with MET exon 14 skipping[J]. J Thorac Oncol, 2017, 12(1):137-140. doi: 10.1016/j.jtho.2016.09.119
    [29] Bahcall M, Sim T, Paweletz CP, et al. Acquired METD1228V mutation and resistance to MET inhibition in lung cancer[J]. Cancer Discov, 2016, 6(12):1334-1341. doi: 10.1158/2159-8290.CD-16-0686
    [30] Han S, Fang J, Lu S, et al. Response and acquired resistance to savolitinib in a patient with pulmonary sarcomatoid carcinoma harboring MET exon 14 skipping mutation:a case report[J]. Onco Targets Ther, 2019, 12:7323-7328. doi: 10.2147/OTT.S210365
    [31] Li A, Yang J, Zhang XC, et al. Acquired MET Y1248H and D1246N mutations mediate resistance to MET inhibitors in non-small cell lung cancer[J]. Clin Cancer Res, 2017, 23(16):4929-4937. doi: 10.1158/1078-0432.CCR-16-3273
    [32] Gimenez-Xavier P, Pros E, Bonastre E, et al. Genomic and molecular screenings identify different mechanisms for acquired resistance to MET inhibitors in lung cancer cells[J]. Mol Cancer Ther, 2017, 16(7):1366-1376. doi: 10.1158/1535-7163.MCT-17-0104
    [33] Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230):124-128. doi: 10.1126/science.aaa1348
    [34] Schrock AB, Frampton GM, Suh J, et al. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations[J]. J Thorac Oncol, 2016, 11(9):1493-1502. doi: 10.1016/j.jtho.2016.06.004
    [35] Spigel DR, Schrock AB, Fabrizio D, et al. Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD- L1 targeted therapies[J]. J Clin Oncol, 2016, 34(suppl 15):9017. https://www.researchgate.net/publication/306202583_Total_mutation_burden_TMB_in_lung_cancer_LC_and_relationship_with_response_to_PD-1PD-L1_targeted_therapies
    [36] Gainor JF, Shaw AT, Sequist LV, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer:a retrospective analysis[J]. Clin Cancer Res, 2016, 22(18):4585-4593. doi: 10.1158/1078-0432.CCR-15-3101
    [37] Sun ZJ, Wu Y, Hou WH, et al. A novel bispecific c-MET/PD-1 antibody with therapeutic potential in solid cancer[J]. Oncotarget, 2017, 8(17):29067-29079. doi: 10.18632/oncotarget.16173
    [38] Sun X, Li CW, Wang WJ, et al. Inhibition of c-MET upregulates PD-L1 expression in lung adenocarcinoma[J]. Am J Cancer Res, 2020, 10(2):564-571.
    [39] Titmarsh HF, O'Connor R, Dhaliwal K, et al. The emerging role of the cMET-HGF axis in non-small lung cancer tumor immunology and immunotherapy[J]. Front Oncol, 2020, 10:54. doi: 10.3389/fonc.2020.00054
  • 加载中
图(2)
计量
  • 文章访问数:  1500
  • HTML全文浏览量:  126
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-16
  • 刊出日期:  2020-12-26

目录

    /

    返回文章
    返回