EphA2在鼻咽癌致病过程中的作用及治疗靶点展望

梁政 董恺悌 周慧芳 任秀宝

梁政, 董恺悌, 周慧芳, 任秀宝. EphA2在鼻咽癌致病过程中的作用及治疗靶点展望[J]. 中国肿瘤临床, 2020, 47(14): 741-746. doi: 10.3969/j.issn.1000-8179.2020.14.484
引用本文: 梁政, 董恺悌, 周慧芳, 任秀宝. EphA2在鼻咽癌致病过程中的作用及治疗靶点展望[J]. 中国肿瘤临床, 2020, 47(14): 741-746. doi: 10.3969/j.issn.1000-8179.2020.14.484
Liang Zheng, Dong Kaiti, Zhou Huifang, Ren Xiubao. Role of EphA2 in pathogenesis of nasopharyngeal carcinoma and its potential as a therapeutic target[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(14): 741-746. doi: 10.3969/j.issn.1000-8179.2020.14.484
Citation: Liang Zheng, Dong Kaiti, Zhou Huifang, Ren Xiubao. Role of EphA2 in pathogenesis of nasopharyngeal carcinoma and its potential as a therapeutic target[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(14): 741-746. doi: 10.3969/j.issn.1000-8179.2020.14.484

EphA2在鼻咽癌致病过程中的作用及治疗靶点展望

doi: 10.3969/j.issn.1000-8179.2020.14.484
基金项目: 

天津市自然科学基金项目 17JCYBJC25600

详细信息
    作者简介:

    梁政  专业方向为头颈肿瘤研究。E-mail:liangzheng86@icloud.com

    通讯作者:

    周慧芳  ent1682002@126.com

Role of EphA2 in pathogenesis of nasopharyngeal carcinoma and its potential as a therapeutic target

Funds: 

This work was supported by the Natural Science Foundation of Tianjin 17JCYBJC25600

More Information
  • 摘要: 促红细胞生成素产生肝细胞受体(erythropoietin-producing hepatocellular receptor,Eph)及其配体ephrin,是最大受体酪氨酸激酶(RTK)家族,由于配体ephrin和Eph受体均结合在细胞膜上,激活的信号转导通路,一般发生在直接接触的细胞之间,具有双向信号转导的独特特点。Eph受体-ephrin配体导致排斥性细胞收缩反应在许多生理和病理过程中起重要作用,在16种Eph受体中,EphA2与肿瘤的联系最强,因此已被广泛研究。肿瘤细胞中的EphA2信号传导可能具有促进肿瘤或抑制肿瘤的作用,取决于肿瘤微环境,EphA2具有需要配体和激酶活性的经典信号,也具有不需要配体或激酶活性的非经典信号形式。本文就近年来Epha2在鼻咽癌致病过程中非受体依赖机制和作为EB病毒感染关键分子的作用及治疗靶点展望等研究进展进行综述,以期为鼻咽癌的预防和治疗提供新的思路。

     

  • 图  1  EphA2在肿瘤中的作用

    图  2  EphA2在NPC致病过程中的作用及治疗靶点

  • [1] 中国抗癌协会肿瘤标志专业委员会鼻咽癌标志物专家委员会.鼻咽癌标志物临床应用专家共识[J].中国癌症防治杂志, 2019, 11(3):183-193. doi: 10.3969/j.issn.1674-5671.2019.03.01
    [2] Chua MLK, Wee JTS, Hui EP, et al. Nasopharyngeal carcinoma[J]. Lancet, 2016, 387(10022):1012-1024. doi: 10.1016/S0140-6736(15)00055-0
    [3] Hirai H, Maru Y, Hagiwara K, et al. A novel putative tyrosine kinase receptor encoded by the eph gene[J]. Science, 1987, 238:1717-1720. doi: 10.1126/science.2825356
    [4] Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease[J]. Cell, 2008, 133(1):38-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=372496e0f55afa251a54f4767e954b01
    [5] Anderson DJ, Barbacld M, Berg LJ, et al. Unified nomenclature for eph family receptors and their ligands, the Ephrins[J]. Cell, 1997, 90(3):403-404. https://www.cell.com/fulltext/S0092-8674(00)80500-0
    [6] Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins[J]. Cold Spring Harb Perspect Biol, 2013, 5(9):a009159. doi: 10.1101/cshperspect.a009159
    [7] Pasquale EB. Eph receptor signalling casts a wide net on cell behaviour[J]. Nat Rev Mol Cell Biol, 2005, 6(6):462-475. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caf20a265285f8b271306855036ca751
    [8] Ireton RC, Chen J. EphA2 receptor tyrosine kinase as a promising target for cancer therapeutics[J]. Current Cancer Drug Targets, 2005, 5:149-157. doi: 10.2174/1568009053765780
    [9] Wykosky J, Debinski W. The EphA2 receptor and ephrinA1 ligand in solid tumors:function and therapeutic targeting[J]. Mol Cancer Res, 2008, 6(12):1795-1806. doi: 10.1158/1541-7786.MCR-08-0244
    [10] Tandon M, Vemula SV, Mittal SK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics[J]. Review, 2011, 15(1):31-51. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3016619/
    [11] Pasquale EB. Eph receptors and ephrins in cancer:bidirectional signalling and beyond[J]. Nat Rev Cancer, 2010, 10(3):165-180. doi: 10.1038/nrc2806
    [12] Beauchamp A, Debinski W. Ephs and ephrins in cancer:ephrin-A1 signalling[J]. Semin Cell Dev Biol, 2012, 23(1):109-115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288643/
    [13] Miao H, Wei BR, Peehl DM, et al. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway[J]. Nat Cell Biol, 2001, 3(5):527-530. doi: 10.1038/35074604
    [14] Yang NY, Fernandez C, Richter M, et al. Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells[J]. Cell Signal, 2011, 23(1):201-212. doi: 10.1016/j.cellsig.2010.09.004
    [15] Miao H, Li DQ, Mukherjee A, et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt[J]. Cancer Cell, 2009, 16(1):9-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=934375d011786f9751ec605f83c234e3
    [16] Miao H, Gale NW, Guo H, et al. EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties[J]. Oncogene, 2015, 34(5):558-567. doi: 10.1038/onc.2013.590
    [17] Paraiso KH, Das Thakur M, Fang B, et al. Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype[J]. Cancer Discov, 2015, 5(3):264-273. doi: 10.1158/2159-8290.CD-14-0293
    [18] Petty A, Myshkin E, Qin H, et al. A small molecule agonist of EphA2 receptor tyrosine kinase inhibits tumor cell migration in vitro and prostate cancer metastasis in vivo[J]. PLoS One, 2012, 7(8):e42120. doi: 10.1371/journal.pone.0042120
    [19] Koshikawa N, Hoshino D, Taniguchi H, et al. Proteolysis of EphA2 converts it from a tumor suppressor to an oncoprotein[J]. Cancer Res, 2015, 75(16):3327-3339. doi: 10.1158/0008-5472.CAN-14-2798
    [20] Ieguchi K, Tomita T, Omori T, et al. ADAM12-cleaved ephrin-A1 contributes to lung metastasis[J]. Oncogene, 2014, 33(17):2179-2190. doi: 10.1038/onc.2013.180
    [21] Li JY, Xiao T, Yi HM, et al. S897 phosphorylation of EphA2 is indispensable for EphA2-dependent nasopharyngeal carcinoma cell invasion, metastasis and stem properties[J]. Cancer Lett, 2019, 444:162-174. doi: 10.1016/j.canlet.2018.12.011
    [22] Tan P, Liu Y, Yu C, et al. EphA2 silencing in nasopharyngeal carcinoma leads to decreased proliferation, invasion and increased sensitization to paclitaxel[J]. Oncol Lett, 2012, 4(3):429-434. doi: 10.3892/ol.2012.746
    [23] Wang Y, Liu Y, Li G, et al. Ephrin typeA receptor 2 regulates sensitivity to paclitaxel in nasopharyngeal carcinoma via the phosphoinositide 3kinase/Akt signalling pathway[J]. Mol Med Rep, 2015, 11(2):924-930. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262504/
    [24] 卢善翃, 王芸芸, 李果, 等.EphA2经P-糖蛋白调控鼻咽癌紫杉醇敏感性的实验研究[J].中国耳鼻咽喉颅底外科杂志, 2018, 1(24):33-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgebyhldwkzz201801008
    [25] Fingeroth JD, Weis JJ, Tedder TF, et al. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2[J]. Immunology, 1984, 81(14):4510-4514. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC345620/
    [26] Mullen MM, Keith MH, Richard L, et al. Structure of the epstein-barr virus gp42 protein bound to the MHC class ⅢReceptor HLA-DR1[J]. Molecular Cell, 2002, 9(2):375-385. https://europepmc.org/article/MED/11864610
    [27] Nemerow GR, Mold C, Schwend VK, et al. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-barr virus (EBV) to the EBV/C3d receptor of B cells:sequence homology of gp350 and C3 complement fragment C3dt[J]. J Virol, 1987, 61(5):155-158. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM3033269
    [28] Connolly SA, Jackson JO, Jardetzky TS, et al. Fusing structure and function:a structural view of the herpesvirus entry machinery[J]. Nat Rev Microbiol, 2011, 9(5):369-381. doi: 10.1038/nrmicro2548
    [29] Ressing ME, Leeuwen DV, Verreck FAW, et al. Interference with T cell receptor-HLA-DR interactions by Epstein-Barr virus gp42 results in reduced T helper cell recognition[J]. Proc Natl Acad Sci U S A, 2003, 100(20):11583-1188. doi: 10.1073/pnas.2034960100
    [30] Sathiyamoorthy K, Jiang J, Hu YX, et al. Assembly and architecture of the EBV B cell entry triggering complex[J]. PLoS Pathog, 2014, 10(8):e1004309. doi: 10.1371/journal.ppat.1004309
    [31] Borza CM, Hutt-Fletcher LM. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus[J]. Nat Med, 2002, 8(6):594-599. doi: 10.1038/nm0602-594
    [32] Kirschner AN, Omerovic J, Popov B, et al. Soluble Epstein-barr virus glycoproteins gH, gL, and gp42 form a 1:1:1 stable complex that acts like soluble gp42 in B-cell fusion but not in epithelial cell fusion[J]. J Virol, 2006, 80(19):9444-9454. doi: 10.1128/JVI.00572-06
    [33] Turk SM, Jiang R, Chesnokova LS, et al. Antibodies to gp350/220 enhance the ability of Epstein-Barr virus to infect epithelial cells[J]. J Virol, 2006, 80(19):9628-9633. doi: 10.1128/JVI.00622-06
    [34] Wang X, Kenyon WJ, Li Q, et al. Epstein-barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells[J]. J Virol, 1998, 72(7):109-119. http://med.wanfangdata.com.cn/viewHTML/PeriodicalPaper_JJ023319083.aspx
    [35] Chesnokova LS, Hutt-Fletcher LM. Fusion of epstein-barr virus with epithelial cells can be triggered by alphavbeta5 in addition to alphavbeta6 and alphavbeta8, and integrin binding triggers a conformational change in glycoproteins gHgL[J]. J Virol, 2011, 85(24):13214-13223. doi: 10.1128/JVI.05580-11
    [36] Chesnokova LS, Nishimura SL, Hutt-Fletcher LM. Fusion of epithelial cells by Epstein-Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins αvβ6 or αvβ8[J]. PNAS, 2009, 106(48):20464-20469. doi: 10.1073/pnas.0907508106
    [37] Chen J, Sathiyamoorthy K, Zhang X, et al. Ephrin receptor A2 is a functional entry receptor for Epstein-Barr virus[J]. Nat Microbiol, 2018, 3(2):172-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c93c8b7870a5c65a6037cca8ad6fc00a
    [38] Zhang H, Li Y, Wang HB, et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-barr virus entry[J]. Nat Microbiol, 2018, 3(2):1-8. https://scholars.houstonmethodist.org/en/publications/ephrin-receptor-a2-is-an-epithelial-cell-receptor-for-epsteinbarr-virus-entry(7760829d-12d7-45de-b2f0-4e868aebb8b6).html
    [39] Xiang T, Lin YX, Ma W, et al. Vasculogenic mimicry formation in EBVassociated epithelial malignancies[J]. Nat Commun, 2018, 9(1):5009. https://www.ncbi.nlm.nih.gov/pubmed/30479336
    [40] Miao H, Li DQ, Mukherjee A, et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt[J]. Cancer Cell, 2009, 16(1):9-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=934375d011786f9751ec605f83c234e3
    [41] Chang Q, Jorgensen C, Pawson T, et al. Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer[J]. Br J Cancer, 2008, 99:1074-1082. doi: 10.1038/sj.bjc.6604676
    [42] Wykosky J, Palma E, Gibo DM, et al. Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor[J]. Oncogene, 2008, 27(58):7260-7273. doi: 10.1038/onc.2008.328
    [43] Koolpe M, Dail M, Pasquale EB. An ephrin mimetic peptide that selectively targets the EphA2 receptor[J]. J Biol Chem, 2002, 277(49):46974-46979. doi: 10.1074/jbc.M208495200
    [44] Landen CN Jr, Lu C, Han LY, et al. Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer[J]. J Natl Cancer Inst, 2006, 98(21):1558-1570. doi: 10.1093/jnci/djj414
    [45] Coffman KT, Hu M, Carles-Kinch K, et al. Differential EphA2 epitope display on normal versus malignant cells[J]. Cancer Res, 2003, 63(22):7907-7912. https://www.ncbi.nlm.nih.gov/pubmed/14633720
    [46] Alves PM, Faure O, Graff-Dubois S, et al. EphA2 as target of anticancer immunotherapy:identification of HLA-A*0201-restricted epitopes[J]. Cancer Res, 2003, 63(23):8476-8480. https://www.ncbi.nlm.nih.gov/pubmed/14679012
    [47] Duxbury MS, Ito H, Zinner MJ, et al. EphA2:a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma[J]. Oncogene, 2004, 23(7):1448-1456. doi: 10.1038/sj.onc.1207247
    [48] Wu B, Wang S, De SK, et al. Design and characterization of novel EphA2 agonists for targeted delivery of chemotherapy to cancer cells[J]. Chem Biol, 2015, 22(7):876-887. doi: 10.1016/j.chembiol.2015.06.011
    [49] Lee JW, Han HD, Shahzad MMK, et al. EphA2 immunoconjugate as molecularly targeted chemotherapy for ovarian carcinoma[J]. J Natl Cancer Inst, 2009, 101(17):1193-1205. doi: 10.1093/jnci/djp231
    [50] Bennett G, Brown A, Mudd G, et al. MMAE delivery using the Bicycle toxin conjugate BT5528[J]. Mol Cancer Ther, 2020, 12:1092. https://mct.aacrjournals.org/content/molcanther/early/2020/05/09/1535-7163.MCT-19-1092.full.pdf
  • 加载中
图(2)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  13
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-23
  • 刊出日期:  2020-12-26

目录

    /

    返回文章
    返回