多靶向嵌合抗原受体T细胞在恶性肿瘤中的研究进展

舒琳倩 李琳 王雪娟 侯宗柳 王晓丹 廖力微

舒琳倩, 李琳, 王雪娟, 侯宗柳, 王晓丹, 廖力微. 多靶向嵌合抗原受体T细胞在恶性肿瘤中的研究进展[J]. 中国肿瘤临床, 2020, 47(14): 747-751. doi: 10.3969/j.issn.1000-8179.2020.14.487
引用本文: 舒琳倩, 李琳, 王雪娟, 侯宗柳, 王晓丹, 廖力微. 多靶向嵌合抗原受体T细胞在恶性肿瘤中的研究进展[J]. 中国肿瘤临床, 2020, 47(14): 747-751. doi: 10.3969/j.issn.1000-8179.2020.14.487
Shu Linqian, Li Lin, Wang Xuejuan, Hou Zongliu, Wang Xiaodan, Liao Liwei. Advances of multi-targeted chimeric antigen receptor T cells in malignant tumors[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(14): 747-751. doi: 10.3969/j.issn.1000-8179.2020.14.487
Citation: Shu Linqian, Li Lin, Wang Xuejuan, Hou Zongliu, Wang Xiaodan, Liao Liwei. Advances of multi-targeted chimeric antigen receptor T cells in malignant tumors[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(14): 747-751. doi: 10.3969/j.issn.1000-8179.2020.14.487

多靶向嵌合抗原受体T细胞在恶性肿瘤中的研究进展

doi: 10.3969/j.issn.1000-8179.2020.14.487
基金项目: 

云南省科技计划项目 2017IB020

云南省科技计划项目 2018DG014

昆明市科技计划项目 2019-1-N-25318000002027

详细信息
    作者简介:

    舒琳倩  专业方向为多靶向CAR-T细胞精准治疗恶性肿瘤。E-mail:1422898197@qq.com

    通讯作者:

    廖力微  841434725@qq.com

Advances of multi-targeted chimeric antigen receptor T cells in malignant tumors

Funds: 

This work was supported by the Science and Technology Fund of Yunnan Province 2017IB020

This work was supported by the Science and Technology Fund of Yunnan Province 2018DG014

The Science and Technology Fund of Kunming City 2019-1-N-25318000002027

More Information
  • 摘要: 中国恶性肿瘤发病率和死亡率居全球第一,降低肿瘤复发率和死亡率的研究进展迫在眉睫。其中发展较快,治疗效果较好的方式是嵌合抗原受体(chimeric antigen receptor,CAR)T细胞治疗,但是单靶向CAR-T细胞治疗恶性肿瘤存在抗原丢失、肿瘤复发等局限性,目前国内外通过构建多靶向CAR-T治疗肿瘤可以同时识别和靶向两个及两个以上肿瘤相关抗原,从而有效避免抗原逃逸和防止肿瘤复发。本文重点综述目前正在开发和测试的多靶向CAR-T细胞治疗恶性肿瘤的研究进展,以及多靶向CAR-T细胞治疗的优势和克服单靶向CAR-T细胞治疗后肿瘤复发的局限性,并探讨多靶向CAR-T联合其他方式的治疗效果。多靶向CAR-T细胞治疗有望成为提高抗癌疗效和缓解癌症进展的方法之一。

     

  • [1] Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China:good or bad news from the 2018 global cancer statistics[J]? Lond, 2019, 39(1):22. doi: 10.1186/s40880-019-0368-6
    [2] June CH, Sadelain M. Chimeric antigen receptor therapy[J]. N Engl J Med, 2018, 379(1):64-73.[3 June CH, O'Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer[J]. Science, 2018, 359(6382):1361-1365. doi: 10.1056/NEJMra1706169
    [3] June CH, O'Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer[J]. Science, 2018, 359(6382):1361-1365. doi: 10.1126/science.aar6711
    [4] Ruella M, Barrett DM, Kenderian SS, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies[J]. J Clin Invest, 2016, 126(10):3814-3826. doi: 10.1172/JCI87366
    [5] Qin H, Ramakrishna S, Nguyen S, et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22[J]. Mol Ther Oncolytics, 2018, 11:127-137. doi: 10.1016/j.omto.2018.10.006
    [6] Sotillo E, Barrett DM, Black KL, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy[J]. Cancer Discov, 2015, 5(12):1282-1295. doi: 10.1158/2159-8290.CD-15-1020
    [7] Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that Is naive or resistant to CD19-targeted CAR immunotherapy[J]. Nat Med, 2018, 24(1):20-28. doi: 10.1038/nm.4441
    [8] Walsh Z, Ross S, Fry TJ. Multi-specific CAR targeting to prevent antigen escape[J]. Curr Hematol Malig Rep, 2019, 14(5):451-459. doi: 10.1007/s11899-019-00537-5
    [9] Shah NN, Maatman T, Hari P, et al. Multi targeted CAR-T cell therapies for B-Cell malignancies[J]. Front Oncol, 2019, 9:146. doi: 10.3389/fonc.2019.00146
    [10] Grada Z, Hegde M, Byrd T, et al. TanCAR:a novel bispecific chimeric antigen receptor for cancer immunotherapy[J]. Mol Ther Nucleic Acids, 2013, 2(7):e105. http://jnci.oxfordjournals.org/external-ref?access_num=10.1038/mtna.2013.32&link_type=DOI
    [11] Hegde M, Corder A, Chow KK, et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma[J]. Mol Ther, 2013, 21(11):2087-2101. doi: 10.1038/mt.2013.185
    [12] Fousek K, Watanabe J, Joseph SK, et al. CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression[J]. Leukemia, 2020, 10:1038 http://www.nature.com/articles/s41375-020-0792-2
    [13] De Munter S, Ingels J, Goetgeluk G, et al. Nanobody based dual specific CARs[J]. Int J Mol Sci, 2018, 19(2):403. doi: 10.3390/ijms19020403
    [14] Qin H, Edwards JP, Zaritskaya L, et al. Chimeric antigen receptors incorporating d domains targeting CD123 direct potent mono-and bispecific antitumor activity of T cells[J]. Mol Ther, 2019, 27(7):1262-1274. doi: 10.1016/j.ymthe.2019.04.010
    [15] Tu S, Zhou X, Guo Z, et al. CD19 and CD70 dual-target chimeric antigen receptor T-Cell therapy for the treatment of relapsed and refractory primary central nervous system diffuse large B-Cell lymphoma[J]. Front Oncol, 2019, 9:1350. doi: 10.3389/fonc.2019.01350
    [16] Ormhøj M, Scarfò I, Cabral ML, et al. Chimeric antigen receptor T cells targeting CD79b show efficacy in lymphoma with or without cotargeting CD19[J]. Clin Cancer Res, 2019, 25(23):7046-7057. doi: 10.1158/1078-0432.CCR-19-1337
    [17] He X, Feng Z, Ma J, et al. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia[J]. Blood, 2020, 135(10):713-723. doi: 10.1182/blood.2019002779
    [18] Lee L, Draper B, Chaplin N, et al. An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma[J]. Blood, 2018, 131(7):746-758. doi: 10.1182/blood-2017-05-781351
    [19] Yan Z, Cao J, Cheng H, et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma:a single-arm, phase 2 trial[J]. Lancet Haematol, 2019, 6(10):e521-e529. doi: 10.1016/S2352-3026(19)30115-2
    [20] Kang L, Zhang J, Li M, et al. Characterization of novel dual tandem CD19/BCMA chimeric antigen receptor T cells to potentially treat multiple myeloma[J]. Biomark Res, 2020, 8:14. doi: 10.1186/s40364-020-00192-6
    [21] Zah E, Nam E, Bhuvan V, et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma[J]. Nat Commun, 2020, 11(1):2283. http://www.nature.com/articles/s41467-020-16160-5
    [22] Hegde M, Mukherjee M, Grada Z, et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape[J]. J Clin Invest, 2016, 126(8):3036-3052. doi: 10.1172/JCI83416
    [23] Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity[J]. Nat Biotechnol, 2019, 37(9):1049-1058. doi: 10.1038/s41587-019-0192-1
    [24] Agero AL, Dusza SW, Benvenuto-Andrade C, et al. Dermatologic side effects associated with the epidermal growth factor receptor inhibitors[J]. J Am Acad Dermatol, 2006, 55(4):657-670. http://www.ncbi.nlm.nih.gov/pubmed/17010747
    [25] Zhao W, Jia L, Zhang M, et al. The killing effect of novel bi-specific Trop2/PD-L1 CAR-T cell targeted gastric cancer[J]. Am J Cancer Res, 2019, 9(8):1846-1856. http://www.researchgate.net/publication/335724767_The_killing_effect_of_novel_bi-specific_Trop2PD-L1_CAR-T_cell_targeted_gastric_cancer
    [26] Zhang E, Yang P, Gu J, et al. Recombination of a dual-CAR-modified T lymphocyte to accurately eliminate pancreatic malignancy[J]. J Hematol Oncol, 2018, 11(1):102 doi: 10.1186/s13045-018-0646-9
    [27] Schuberth PC, Hagedorn C, Jensen SM, et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells[J]. J Transl Med, 2013, 11:187. doi: 10.1186/1479-5876-11-187
    [28] Hofheinz RD, al-Batran SE, Hartmann F, et al. Stromal antigen targeting by a humanised monoclonal antibody:an early phase Ⅱ trial of sibrotuzumab in patients with metastatic colorectal cancer[J]. Onkologie, 2003, 26(1):44-48. http://europepmc.org/abstract/MED/12624517
    [29] Orlando EJ, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia[J]. Nat Med, 2018, 24(10):1504-1506. doi: 10.1038/s41591-018-0146-z
    [30] Jacoby E, Nguyen SM, Fountaine TJ, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity[J]. Nat Commun, 2016, 7:12320. doi: 10.1038/ncomms12320
    [31] Wang Y, Xu Y, Li S, et al. Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells[J]. J Hematol Oncol, 2018, 11(1):60. http://europepmc.org/abstract/MED/29716633
    [32] Jetani H, Garcia-Cadenas I, Nerreter T, et al. CAR T-cells targeting FLT3 have potent activity against FLT3ITD AML and act synergistically with the FLT3-inhibitor crenolanib[J]. Leukemia, 2018, 32(5):1168-1179. doi: 10.1038/s41375-018-0009-0
    [33] Krishnamurthy A, Jimeno A. Bispecific antibodies for cancer therapy:A review[J]. Pharmacol Ther, 2018, 185:122-134. doi: 10.1016/j.pharmthera.2017.12.002
    [34] Topp MS, Gökbuget N, Zugmaier G, et al. PhaseⅡ trial of the antiCD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory Bprecursor acute lymphoblastic leukemia[J]. J Clin Oncol, 2014, 32(36):4134-4140. doi: 10.1200/JCO.2014.56.3247
    [35] Sedykh SE, Prinz VV, Buneva VN, et al. Bispecific antibodies:design, therapy, perspectives[J]. Drug Des Devel Ther, 2018, 12:195-208. doi: 10.2147/DDDT.S151282
    [36] Ma L, Dichwalkar T, Chang JYH, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor[J]. Science, 2019, 365(6449):162-168. http://www.researchgate.net/publication/334431862_Enhanced_CAR-T_cell_activity_against_solid_tumors_by_vaccine_boosting_through_the_chimeric_receptor
    [37] Bielamowicz K, Fousek K, Byrd TT, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma[J]. Neuro Oncol, 2018, 20(4):506-518. doi: 10.1093/neuonc/nox182
    [38] Garcia Borrega J, Gödel P, Rüger MA, et al. In the eye of the storm:immune-mediated toxicities associated with CAR-T cell therapy[J]. Hemasphere, 2019, 3(2):e191. doi: 10.1097/HS9.0000000000000191
    [39] Rafiq S, Yeku OO, Jackson HJ, et al. Targeted delivery of a PD-1-bl ocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo[J]. Nat Biotechnol, 2018, 36(9):847-856. doi: 10.1038/nbt.4195
    [40] Fraietta JA, Lacey SF, Orlando EJ, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia[J]. Nat Med, 2018, 24(5):563-571. doi: 10.1038/s41591-018-0010-1
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  26
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-23
  • 刊出日期:  2020-12-26

目录

    /

    返回文章
    返回