组蛋白赖氨酸甲基转移酶NSD3在肿瘤发生中的作用

张瑾 李艳 潘云

张瑾, 李艳, 潘云. 组蛋白赖氨酸甲基转移酶NSD3在肿瘤发生中的作用[J]. 中国肿瘤临床, 2020, 47(22): 1171-1175. doi: 10.3969/j.issn.1000-8179.2020.22.951
引用本文: 张瑾, 李艳, 潘云. 组蛋白赖氨酸甲基转移酶NSD3在肿瘤发生中的作用[J]. 中国肿瘤临床, 2020, 47(22): 1171-1175. doi: 10.3969/j.issn.1000-8179.2020.22.951
Zhang Jin, Li Yan, Pan Yun. The role of histone lysine methyltransferase NSD3 in tumorigenesis[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(22): 1171-1175. doi: 10.3969/j.issn.1000-8179.2020.22.951
Citation: Zhang Jin, Li Yan, Pan Yun. The role of histone lysine methyltransferase NSD3 in tumorigenesis[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(22): 1171-1175. doi: 10.3969/j.issn.1000-8179.2020.22.951

组蛋白赖氨酸甲基转移酶NSD3在肿瘤发生中的作用

doi: 10.3969/j.issn.1000-8179.2020.22.951
基金项目: 

国家自然科学基金项目 81660037

国家自然科学基金项目 881960042

详细信息
    作者简介:

    张瑾  专业方向为肿瘤表观遗传学研究。E-mail:496957216@qq.com

    通讯作者:

    李艳  bigbigsmile04@aliyun.com

The role of histone lysine methyltransferase NSD3 in tumorigenesis

Funds: 

the National Natural Science Foundation of China 81660037

the National Natural Science Foundation of China 881960042

More Information
  • 摘要: NSD3是具有致癌作用的组蛋白赖氨酸甲基转移酶(HKMTases)NSD(核受体结合SET结构域蛋白)家族的一员。近期许多研究表明NSD3在乳腺癌、急性髓性白血病、坚果中线癌、肺癌等多种恶性肿瘤中有促进肿瘤发生的作用,可与NUP98、NUT融合或与BRD4、CHD8、MYC等相互作用,形成致癌复合物;也可以通过调控H3K36me2水平或EGFR(K721)甲基化,加速细胞周期进程,促进肿瘤发生。NSD3不仅参与肿瘤的发生,还与肿瘤的不良预后及侵袭能力有关。本文对NSD3最新的研究进展进行归纳总结,探讨NSD3在肿瘤发生中的作用及潜在的应用前景。

     

  • 图  1  组蛋白赖氨酸甲基转移酶NSD3结构图

    PWWP:脯氨酸-色氨酸-色氨酸-脯氨酸结构域;PHD:锌指结构域;SET:前SET结构域、核心SET结构域、后置SET结构域;PHD5-C5HCH:第5个锌指结构域和富含半胱氨酸-组氨酸结构

    表  1  与组蛋白甲基转移酶NSD3相关的肿瘤

  • [1] Han X, Piao L, Zhuang Q, et al. The role of histone lysine methyltransferase NSD3 in cancer[J]. Onco Targets Ther, 2018, 1(1):3847-3852. http://europepmc.org/articles/PMC6038882/
    [2] Angrand PO, Apiou F, Stewart AF, et al. NSD3, a new SET domaincontaining gene, maps to 8p12 and is amplified in human breast cancer cell lines[J]. Genomics, 2001, 74(1):79-88. doi: 10.1006/geno.2001.6524
    [3] Dillon SC, Zhang X, Trievel RC, et al. The SET-domain protein superfamily:protein lysine methyltransferases[J]. Genome Biol, 2005, 6(8):227. doi: 10.1186/gb-2005-6-8-227
    [4] Baker LA, Allis CD, Wang GG. PHD fingers in human diseases:disorders arising from misinterpreting epigenetic marks[J]. Mutat Res, 2008, 647(1-2):3-12. doi: 10.1016/j.mrfmmm.2008.07.004
    [5] Herz HM, Garruss A, Shilatifard A. SET for life:biochemical activities and biological functions of SET domain-containing proteins[J]. Trends Biochem Sci, 2013, 38(12):621-639. doi: 10.1016/j.tibs.2013.09.004
    [6] Rona GB, Almeida DSG, Pinheiro AS, et al. The PWWP domain of the human oncogene WHSC1L1/NSD3 induces a metabolic shift toward fermentation[J]. Oncotarget, 2017, 8(33):54068-54081. doi: 10.18632/oncotarget.11253
    [7] Kim SM, Kee HJ, Eom GH, et al. Characterization of a novel WHSC1-associated SET domain protein with H3K4 and H3K27 methyltransferase activity[J]. Biochem Biophys Res Commun, 2006, 345(1):318-323. doi: 10.1016/j.bbrc.2006.04.095
    [8] Allali-Hassani A, Kuznetsova E, Hajian T, et al. A basic Post-SET extension of NSDs is essential for nucleosome binding in vitro[J]. J Biomol Screen, 2014, 19(6):928-935. doi: 10.1177/1087057114525854
    [9] Li Y, Trojer P, Xu CF, et al. The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate[J]. J Biol Chem, 2009, 284(49):34283-34295. doi: 10.1074/jbc.M109.034462
    [10] Wang Y, Reddy B, Thompson J, et al. Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein[J]. Mol Cell, 2009, 33(4):428-437. doi: 10.1016/j.molcel.2009.02.002
    [11] Wu H, Zeng H, Lam R, et al. Structural and histone binding ability characterizations of human PWWP domains[J]. PLoS One, 2011, 6(6):e18919. doi: 10.1371/journal.pone.0018919
    [12] Rona GB, Almeida NP, Santos GC, et al. HNMR metabolomics reveals increased glutaminolysis upon overexpression of NSD3s or Pdp3 in Saccharomyces cerevisiae[J]. J Cell Biochem, 2019, 120(4):5377-5385. doi: 10.1002/jcb.27816
    [13] Chang CF, Chu PC, Wu PY, et al. PHRF1 promotes genome integrity by modulating non-homologous end-joining[J]. Cell Death Dis, 2015, 6(4):e1716. doi: 10.1038/cddis.2015.81
    [14] Shi X, Kachirskaia I, Walter KL, et al. Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36[J]. J Biol Chem, 2007, 282(4):2450-2455. doi: 10.1074/jbc.C600286200
    [15] He C, Li F, Zhang J, et al. The methyltransferase NSD3 has chromatinbinding motifs, PHD5-C5HCH, that are distinct from other NSD (nuclear receptor SET domain) family members in their histone H3 recognition[J]. J Biol Chem, 2013, 288(7):4692-4703. doi: 10.1074/jbc.M112.426148
    [16] Chen Y, McGee J, Chen X, et al. Identification of druggable cancer driver genes amplified across TCGA datasets[J]. PLoS One, 2014, 9(5):e98293. doi: 10.1371/journal.pone.0098293
    [17] Yang ZQ, Liu G, Bollig-Fischer A, et al. Transforming properties of 8p11-12 amplified genes in human breast cancer[J]. Cancer Res, 2010, 70(21):8487-8497. doi: 10.1158/0008-5472.CAN-10-1013
    [18] Rosati R, La Starza R, Veronese A, et al. NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15)[J]. Blood, 2002, 99(10):3857-3860. doi: 10.1182/blood.V99.10.3857
    [19] Taketani T, Taki T, Nakamura H, et al. NUP98-NSD3 fusion gene in radiation-associated myelodysplastic syndrome with t(8;11)(p11;p15) and expression pattern of NSD family genes[J]. Cancer Genet Cytogenet, 2009, 190(2):108-112. doi: 10.1016/j.cancergencyto.2008.12.008
    [20] Zhang Q, Zeng L, Shen C, et al. Structural mechanism of transcriptional regulator nsd3 recognition by the ET domain of BRD4[J]. Structure, 2016, 24(7):1201-1208. doi: 10.1016/j.str.2016.04.019
    [21] Chau NG, Ma C, Danga K, et al. An anatomical site and genetic-based prognostic model for patients with nuclear protein in testis (NUT) midline carcinoma:analysis of 124 patients[J]. JNCI Cancer Spectr, 2020, 4(2):pkz094. doi: 10.1093/jncics/pkz094
    [22] French CA, Rahman S, Walsh EM, et al. NSD3-NUT fusion oncoprotein in NUT midline carcinoma:implications for a novel oncogenic mechanism[J]. Cancer Discov, 2014, 4(8):928-941. doi: 10.1158/2159-8290.CD-14-0014
    [23] Kang D, Cho HS, Toyokawa G, et al. The histone methyltransferase WolfHirschhorn syndrome candidate 1-like 1(WHSC1L1) is involved in human carcinogenesis[J]. Genes Chromosomes Cancer, 2013, 52(1):126-139. http://europepmc.org/abstract/med/23011637
    [24] Li Z, Ivanov AA, Su R, et al. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies[J]. Nat Commun, 2017, 8(2):14356.
    [25] Liu Z, Piao L, Zhuang M, et al. Silencing of histone methyltransferase NSD3 reduces cell viability in osteosarcoma with induction of apoptosis[J]. Oncol Rep, 2017, 38(5):2796-2802. doi: 10.3892/or.2017.5936
    [26] Saloura V, Vougiouklakis T, Zewde M, et al. WHSC1L1 drives cell cycle progression through transcriptional regulation of CDC6 and CDK2 in squamous cell carcinoma of the head and neck[J]. Oncotarget, 2016, 7(27):42527-42538.
    [27] Saloura V, Vougiouklakis T, Zewde M, et al. WHSC1L1-mediated EGFR mono-methylation enhances the cytoplasmic and nuclear oncogenic activity of EGFR in head and neck cancer[J]. Sci Rep, 2017, 7(1):40664. http://www.nature.com/articles/srep40664
    [28] D'Afonseca V, Gonzalez G, Salazar M, et al. Computational analyses on genetic alterations in the NSD genes family and the implications for colorectal cancer development[J]. Ecancermedicalscience, 2020, 14(73):1001-1014. http://www.researchgate.net/publication/338610496_Computational_analyses_on_genetic_alterations_in_the_NSD_genes_family_and_the_implications_for_colorectal_cancer_development
    [29] Yi L, Yi L, Liu Q, et al. Downregulation of NSD3(WHSC1L1) inhibits cell proliferation and migration via ERK1/2 deactivation and decreasing CAPG expression in colorectal cancer cells[J]. Onco Targets Ther, 2019, 1(2):3933-3943.
    [30] Jones DH, Lin DI. Amplification of the NSD3-BRD4-CHD8 pathway in pelvic high-grade serous carcinomas of tubo-ovarian and endometrial origin[J]. Mol Clin Oncol, 2017, 7(2):301-307.
    [31] Zhang Y, Yan L, Yao W, et al. Integrated analysis of genetic abnormalities of the histone lysine methyltransferases in prostate cancer[J]. Med Sci Monit, 2019, 2(5):193-239.
    [32] Turner-Ivey B, Smith EL, Rutkovsky AC, et al. Development of mammary hyperplasia, dysplasia, and invasive ductal carcinoma in transgenic mice expressing the 8p11 amplicon oncogene NSD3[J]. Breast Cancer Res Treat, 2017, 164(2):349-358. doi: 10.1007/s10549-017-4258-9
    [33] Shen C, Ipsaro JJ, Shi J, et al. NSD3-short is an adaptor protein that couples BRD4 to the CHD8 chromatin remodeler[J]. Mol Cell, 2015, 60(6):847-859. doi: 10.1016/j.molcel.2015.10.033
    [34] French CA. NUT carcinoma:clinicopathologic features, pathogenesis, and treatment[J]. Pathol Int, 2018, 68(11):583-595. doi: 10.1111/pin.12727
    [35] Yang Z, He N, Zhou Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression[J]. Mol Cell Biol, 2008, 28(3):967-976. doi: 10.1128/MCB.01020-07
    [36] Hargreaves DC, Horng T, Medzhitov R. Control of inducible gene expression by signal-dependent transcriptional elongation[J]. Cell, 2009, 138(1):129-145. doi: 10.1016/j.cell.2009.05.047
    [37] Rahman S, Sowa ME, Ottinger M, et al. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3∇†[J]. Mol Cell Biol, 2011, 31(13):2641-2652. doi: 10.1128/MCB.01341-10
    [38] Gonzalez-Pecchi V, Kwan AK, Doyle S, et al. NSD3S stabilizes MYC through hindering its interaction with FBXW7[J]. J Mol Cell Biol, 2020, 12(6):438-447.
    [39] Xiong J, Pecchi VG, Qui M, et al. Development of a time-resolved fluorescence resonance energy transfer ultrahigh-throughput screening assay for targeting the NSD3 and MYC interaction[J]. Assay Drug Dev Technol, 2018, 16(2):96-106. doi: 10.1089/adt.2017.835
    [40] Böttcher J, Dilworth D, Reiser U, et al. Fragment-based discovery of a chemical probe for the PWWP1 domain of NSD3[J]. Nat Chem Biol, 2019, 15(8):822-829. doi: 10.1038/s41589-019-0310-x
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  19
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 刊出日期:  2020-12-26

目录

    /

    返回文章
    返回