甲状腺超声智能诊断的现状及研究进展

张强 张仑 王旭东 王东 姚晓峰 周旋 李祥春

张强, 张仑, 王旭东, 王东, 姚晓峰, 周旋, 李祥春. 甲状腺超声智能诊断的现状及研究进展[J]. 中国肿瘤临床, 2021, 48(4): 192-196. doi: 10.3969/j.issn.1000-8179.2021.04.478
引用本文: 张强, 张仑, 王旭东, 王东, 姚晓峰, 周旋, 李祥春. 甲状腺超声智能诊断的现状及研究进展[J]. 中国肿瘤临床, 2021, 48(4): 192-196. doi: 10.3969/j.issn.1000-8179.2021.04.478
Qiang Zhang, Lun Zhang, Xudong Wang, Dong Wang, Xiaofeng Yao, Xuan Zhou, Xiangchun Li. Research status and progress of ultrasound artificial intelligence in the diagnosis of thyroid tumors[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(4): 192-196. doi: 10.3969/j.issn.1000-8179.2021.04.478
Citation: Qiang Zhang, Lun Zhang, Xudong Wang, Dong Wang, Xiaofeng Yao, Xuan Zhou, Xiangchun Li. Research status and progress of ultrasound artificial intelligence in the diagnosis of thyroid tumors[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(4): 192-196. doi: 10.3969/j.issn.1000-8179.2021.04.478

甲状腺超声智能诊断的现状及研究进展

doi: 10.3969/j.issn.1000-8179.2021.04.478
基金项目: 

国家自然科学基金面上项目 82073287

国家自然科学基金青年科学基金项目 31801117

天津医科大学-深睿医疗联合基金项目 2020120024001236

详细信息
    作者简介:

    张强  专业方向为头颈部肿瘤学研究。E-mail:zhangqiang@tjmuch.com

    通讯作者:

    李祥春  lixiangchun@tjmuch.com

Research status and progress of ultrasound artificial intelligence in the diagnosis of thyroid tumors

Funds: 

the National Natural Science Foundation of China General Project 82073287

National Natural Science Foundation of China Youth Science Fund Project 31801117

Tianjin Medical University-Shenrui Medical Joint Fund Project 2020120024001236

More Information
  • 摘要: 近几十年在全球范围内甲状腺癌发病率增长迅速。超声检查是甲状腺结节诊断的首选检查手段。作为一项经济、便利且易于推广的检查项目,其对影像学医师的要求较高,需要有丰富的经验。超声检查对甲状腺癌的诊断标准也在不断完善,统一化标准的推广、普及和成熟利用在实施过程中需要大量的人力和财力,目前较难实现。近些年中国医疗卫生资源需求巨大,医疗资源分布欠均衡,临床诊疗中需要全面评估甲状腺结节的恶性风险和颈部淋巴结的性质以进行临床决策,诊断工作繁重复杂。人工智能领域的深度学习算法飞速发展,其在医学图像诊断领域展示出强大的性能,大数据结合深度学习可有效地解决临床诊疗中的问题,深度学习在医疗图像诊断领域、甲状腺结节超声诊断方向显示出较大的优势和应用前景。利用深度学习算法分析超声图像构建超声自动诊断系统,可辅助甲状腺肿瘤超声诊断,简化超声医生的工作流程,有助于提高临床实践效率。本文对近年来深度学习在甲状腺肿瘤及颈部淋巴结超声诊断领域的研究现状和研究进展予以概述。

     

  • [1] Ahn HS, Welch HG. South Korea's thyroid cancer "Epidemic"-Turning the tide[J]. N Engl J Med, 2015, 373(24):2389-2390. doi: 10.1056/NEJMc1507622
    [2] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. doi: 10.3322/caac.21492
    [3] Tuttle RM, Fagin JA, Minkowitz G, et al. Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance [J]. JAMA Otolaryngology Head Neck Surg, 2017, 143(10):1015-1020. doi: 10.1001/jamaoto.2017.1442
    [4] Vaccarella S, Franceschi S, Bray F, et al. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis[J]. N Engl J Med, 2016, 375(7):614-617. doi: 10.1056/NEJMp1604412
    [5] Zhu C, Zheng T, Kilfoy BA, et al. A birth cohort analysis of the incidence of papillary thyroid cancer in the United States, 1973-2004[J]. Thyroid, 2009, 19(10):1061-1066. doi: 10.1089/thy.2008.0342
    [6] Desforges JF, Mazzaferri EL. Management of a solitary thyroid nodule [J]. N Engl J Med, 1993, 328:553-559 doi: 10.1056/NEJM199302253280807
    [7] Guth S, Theune U, Aberle J, et al. Very high prevalence of thyroid nodules detected by high frequency (13MHz) ultrasound examination [J]. Eur J Clin Invest, 2009, 39(8):699-706. doi: 10.1111/j.1365-2362.2009.02162.x
    [8] Brito JP, Morris JC, Montori VM. Thyroid cancer: zealous imaging has increased detection and treatment of low risk tumours[J]. BMJ, 2013, 347:f4706. doi: 10.1136/bmj.f4706
    [9] Papini E, Guglielmi R, Bianchini A, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and colorDoppler features[J]. J Clin Endocrinol Metab, 2002, 87(5):1941-1946. doi: 10.1210/jcem.87.5.8504
    [10] Mandel SJ. A 64-year-old woman with a thyroid nodule[J]. JAMA, 2004, 292(21):2632-2642. doi: 10.1001/jama.292.21.2632
    [11] Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1):1-133. doi: 10.1089/thy.2015.0020
    [12] Fisher SB, Perrier ND. The incidental thyroid nodule[J]. CA Cancer J Clin, 2018, 68(2):97-105. doi: 10.3322/caac.21447
    [13] Tessler FN, Tublin ME. Thyroid sonography: Current applications and future directions[J]. AJR, 1999, 173(2):437-443. doi: 10.2214/ajr.173.2.10430150
    [14] Fujimoto Y, Oka A, Omoto R, et al. Ultrasound scanning of the thyroid gland as a new diagnostic approach[J]. Ultrasonics, 1967, 5(3):177-180. doi: 10.1016/S0041-624X(67)80065-9
    [15] Rago T, Vitti P, Chiovato L, et al. Role of conventional ultrasonography and color flow-doppler sonography in predicting malignancy in "cold" thyroid nodules[J]. Eur J Endocrinol, 1998, 138(1):41-46. http://newmed.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM9461314
    [16] Brito JP, Morris JC, Montori VM. Thyroid cancer: zealous imaging has increased detection and treatment of low risk tumours[J]. BMJ, 2013, 347:f4706. doi: 10.1136/bmj.f4706
    [17] Horvath E, Majlis S, Rossi R, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management[J]. J Clin Endocrinol Metab, 2009, 94(5):1748-1751. doi: 10.1210/jc.2008-1724
    [18] Russ G, Bonnema SJJ, Erdogan MFF, et al. European thyroid association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU-TIRADS[J]. Eur Thyroid J, 2017, 6(5):225-237. doi: 10.1159/000478927
    [19] Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid imaging, reporting and data system (TI-RADS): White paper of the ACR TI-RADS committee[J]. J Am Coll Radiol, 2017, 14(5):587-595. doi: 10.1016/j.jacr.2017.01.046
    [20] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks[J]. Commun ACM, 2017, 60(6):84-90. doi: 10.1145/3065386
    [21] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [22] Goodfellow I, Bengio Y, Courville A,主编.深度学习[M].赵坤剑,译,北 京:北京邮电出版社,2018.
    [23] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016:770-778.
    [24] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2017:4700-4708.
    [25] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. doi: 10.1038/nature21056
    [26] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22):2402-2410. doi: 10.1001/jama.2016.17216
    [27] Ting DSW, Cheung CYL, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22):2211-2223. doi: 10.1001/jama.2017.18152
    [28] Kermany DS, Goldbaum M, Wenjia C, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5):1122-1131. doi: 10.1016/j.cell.2018.02.010
    [29] Ma J, Wu F, Zhu J, et al. A pre-trained convolutional neural networkbased method for thyroid nodule diagnosis[J]. Ultrasonics, 2017, 73: 221-230. doi: 10.1016/j.ultras.2016.09.011
    [30] Song W, Li S, Liu J, et al. Multi-task cascade convolution neural networks for automatic thyroid nodule detection and recognition[J]. IEEE J Biomed Health Inform, 2018, 23(3):1215-1224. http://europepmc.org/abstract/MED/29994412
    [31] Xia J, Chen H, Li Q, et al. Ultrasound-based differentiation of malignant and benign thyroid Nodules: An extreme learning machine approach [J]. Comput Methods Programs Biomed, 2017, 147:37-49. doi: 10.1016/j.cmpb.2017.06.005
    [32] Wang L, Yang S, Yang S, et al. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network[J]. World J Surg Oncol, 2019, 17(1):1-9. doi: 10.1186/s12957-018-1541-0
    [33] Chi JN, Walia E, Babyn P, et al. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network[J]. J Digit Imaging, 2017, 30(4):477-486. doi: 10.1007/s10278-017-9997-y
    [34] Pereira C, Dighe M, Alessio AM. Comparison of machine learned approaches for thyroid nodule characterization from shear wave elastography images[C]. International Society for Optics and Photonics, 2018:105751X.
    [35] Buda M, Wildman-Tobriner B, Hoang JK, et al. Management of thyroid nodules seen on US images: deep learning may match performance of radiologists[J]. Radiology, 2019, 292(3):695-701. doi: 10.1148/radiol.2019181343
    [36] Li X, Zhang S, Zhang Q, et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study[J]. Lancet Oncol, 2019, 20(2):193-201. doi: 10.1016/S1470-2045(18)30762-9
    [37] Ma J, Wu F, Jiang T, et al. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks[J]. Int J Comput Assist Radiol Surg, 2017, 12(11):1895-1910. doi: 10.1007/s11548-017-1649-7
    [38] Kumar V, Webb J, Gregory A, et al. Automated segmentation of thyroid nodule, gland, and cystic components from ultrasound images using deep learning[J]. IEEE Access, 2020, 8:63482-63496. doi: 10.1109/ACCESS.2020.2982390
    [39] Chen D, Niu J, Pan Q, et al. A deep-learning based ultrasound text classifier for predicting benign and malignant thyroid nodules[C]. 2017 International Conference on Green Informatics (ICGI), 2017:199-204.
    [40] Lee JH, Baek JH, Kim JH, et al. Deep learning-based computer-aided diagnosis system for localization and diagnosis of metastatic lymph nodes on ultrasound: a pilot study[J]. Thyroid, 2018, 28(10):1332-1338. doi: 10.1089/thy.2018.0082
    [41] 高明,郑向前.甲状腺癌过去与未来十年[J].中国肿瘤临床,2018,45(1): 2-6. doi: 10.3969/j.issn.1000-8179.2018.01.897
    [42] Vollmer S, Mateen BA, Bohner G, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness[J]. BMJ, 2020, 369: m1312. http://www.bmj.com/content/368/bmj.l6927/article-info
  • 加载中
计量
  • 文章访问数:  451
  • HTML全文浏览量:  32
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-18
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回