循环肿瘤DNA在脑胶质瘤中的研究进展

孙新新 顾明亮

孙新新, 顾明亮. 循环肿瘤DNA在脑胶质瘤中的研究进展[J]. 中国肿瘤临床, 2021, 48(7): 361-365. doi: 10.3969/j.issn.1000-8179.2021.07.178
引用本文: 孙新新, 顾明亮. 循环肿瘤DNA在脑胶质瘤中的研究进展[J]. 中国肿瘤临床, 2021, 48(7): 361-365. doi: 10.3969/j.issn.1000-8179.2021.07.178
Xinxin Sun, Mingliang Gu. Research progress on circulating tumor DNA in gliomas[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(7): 361-365. doi: 10.3969/j.issn.1000-8179.2021.07.178
Citation: Xinxin Sun, Mingliang Gu. Research progress on circulating tumor DNA in gliomas[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2021, 48(7): 361-365. doi: 10.3969/j.issn.1000-8179.2021.07.178

循环肿瘤DNA在脑胶质瘤中的研究进展

doi: 10.3969/j.issn.1000-8179.2021.07.178
详细信息
    作者简介:

    孙新新  专业方向为肿瘤多组学研究。E-mail:xxzjxinxin@163.com

    通讯作者:

    顾明亮  minglianggu@hotmail.com

Research progress on circulating tumor DNA in gliomas

More Information
  • 摘要: 脑胶质瘤是脑内最常见的原发性恶性肿瘤,包括多种亚型,预后各异。其病变部位特殊,手术切除较困难,后续治疗方法极为有限。在精准医疗时代,发现肿瘤驱动基因或驱动突变、鉴定其特殊DNA突变模式已成为现代肿瘤学研究的重点和难点。常规肿瘤组织活检仅提供了单一部位、单一时间的肿瘤细胞信息,不能充分描述肿瘤基因组异质性及其动态变化的全景特征。循环肿瘤DNA(circulating tumor DNA,ctDNA)监测以非侵入性的方式连续观察肿瘤基因组的变化,为癌症诊断、治疗反应和预后判断提供有价值的生物标志物。本文回顾ctDNA在脑胶质瘤中的研究进展,对其检测方法及在早期诊断、反映肿瘤突变负荷、监测疗效和反映肿瘤细胞的异质性等方面的研究进行系统综述。

     

  • 表  1  ctDNA检测常用的检测方法

  • [1] Simonelli M, Dipasquale A, Orzan F, et al. Cerebrospinal fluid tumor DNA for liquid biopsy in glioma patients' management: Close to the clinic[J]? Crit Rev Oncol Hematol, 2020, 146: 102879. doi: 10.1016/j.critrevonc.2020.102879
    [2] Panditharatna E, Kilburn LB, Aboian MS, et al. Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy[J]. Clin Cancer Res, 2018, 24(23): 5850-5859. doi: 10.1158/1078-0432.CCR-18-1345
    [3] Huang TY, Piunti A, Lulla RR, et al. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma[J]. Acta Neuropathol Commun, 2017, 5(1): 28. doi: 10.1186/s40478-017-0436-6
    [4] Bonner ER, Bornhorst M, Packer RJ, et al. Liquid biopsy for pediatric central nervous system tumors[J]. NPJ Precis Oncol, 2018, 17(2): 29. http://www.nature.com/articles/s41698-018-0072-z
    [5] Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010[J]. Neuro Oncol, 2013, 15(suppl 2): ii1-ii56.
    [6] Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. doi: 10.1007/s00401-016-1545-1
    [7] Kaminska B, Czapski B, Guzik R, et al. Consequences of IDH1/2 Mutations in gliomas and an assessment of inhibitors targeting mutated IDH proteins[J]. Molecules, 2019, 24(5): 968. doi: 10.3390/molecules24050968
    [8] Kaloshi G, Benouaich-Amiel A, Diakite F, et al. Temozolomide for low- grade gliomas: Predictive impact of 1p/19q loss on response and outcome[J]. Neurology, 2007, 68(21): 1831-1836. doi: 10.1212/01.wnl.0000262034.26310.a2
    [9] Cairncross G, Wang M, Shaw E, et al. Phase Ⅲ trial of chemoradiotherapy for anaplastic oligodendroglioma: long- term results of RTOG 9402[J]. J Clin Oncol, 2013, 31(3): 337-343. doi: 10.1200/JCO.2012.43.2674
    [10] Mansouri A, Hachem LD, Mansouri S, et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges [J]. Neuro Oncol, 2019, 21(2): 167-178. doi: 10.1093/neuonc/noy132
    [11] Yu W, Zhang L, Wei Q, et al. O-methylguanine-DNA methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy[J]. Front Oncol, 2020, 9: 1547. doi: 10.3389/fonc.2019.01547
    [12] Rodriguez FJ, Vizcaino MA, Lin MT. Recent advances on the molecular pathology of glial neoplasms in children and adults[J]. J Mol Diagn, 2016, 18(5): 620-634. doi: 10.1016/j.jmoldx.2016.05.005
    [13] Killela PJ, Reitman ZJ, Jiao Y, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal[J]. Proc Natl Acad Sci U S A, 2013, 110(15): 6021-6026. doi: 10.1073/pnas.1303607110
    [14] Lee Y, Koh J, Kim SI, et al. The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas[J]. Acta Neuropathol Commun, 2017, 5(1): 62. doi: 10.1186/s40478-017-0465-1
    [15] Kannan K, Inagaki A, Silber J, et al. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma[J]. Oncotarget, 2012, 3(10): 1194-1203. doi: 10.18632/oncotarget.689
    [16] Puget S, Beccaria K, Blauwblomme T, et al. Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas[J]. Childs Nerv Syst, 2015, 31(10): 1773-1780. doi: 10.1007/s00381-015-2832-1
    [17] Lapin DH, Tsoli M, Ziegler DS. Genomic insights into diffuse intrinsic pontine glioma[J]. Front Oncol, 2017, 28(7): 57. http://europepmc.org/abstract/MED/28401062
    [18] Cohen KJ, Jabado N, Grill J. Diffuse intrinsic pontine gliomas-current management and new biologic insights. Is there a glimmer of hope [J]? Neuro Oncol, 2017, 19(8): 1025-1034. doi: 10.1093/neuonc/nox021
    [19] Valpione S, Gremel G, Mundra P, et al. Plasma total cell-free DNA (cfDNA) is a surrogate biomarker for tumour burden and a prognostic biomarker for survival in metastatic melanoma patients[J]. Eur J Cancer, 2018, 88: 1-9. doi: 10.1016/j.ejca.2017.10.029
    [20] Nie K, Jia Y, Zhang X. Cell-free circulating tumor DNA in plasma/serum of non-small cell lung cancer[J]. Tumour Biol, 2015, 36(1): 7-19. doi: 10.1007/s13277-014-2758-3
    [21] Razavi P, Li BT, Brown DN, et al. High-intensity sequencing reveals the sources of plasma circulating cell- free DNA variants[J]. Nat Med, 2019, 25(12): 1928-1937. doi: 10.1038/s41591-019-0652-7
    [22] Zhang L, Liang Y, Li S, et al. The interplay of circulating tumor DNA and chromatin modification, therapeutic resistance, and metastasis [J]. Mol Cancer, 2019, 18(1): 36. doi: 10.1186/s12943-019-0989-z
    [23] Yao J, Zang W, Ge Y, et al. RAS/BRAF circulating tumor DNA mutations as a predictor of response to first-line chemotherapy in metastatic colorectal cancer patients[J]. Can J Gastroenterol Hepatol, 2018, 7: 4248971. http://europepmc.org/abstract/MED/29707525
    [24] Hannigan B, Ye W, Mehrotra M, et al. Liquid biopsy assay for lung carcinoma using centrifuged supernatants from fine-needle aspiration specimens[J]. Ann Oncol, 2019, 30(6): 963-969. doi: 10.1093/annonc/mdz102
    [25] Ylli D, Patel A, Jensen K, et al. Microfluidic droplet digital PCR is a powerful tool for detection of BRAF and TERT mutations in papillary thyroid carcinomas[J]. Cancers, 2019, 11(12): 1916. doi: 10.3390/cancers11121916
    [26] García- Foncillas, Alba E, Aranda E, et al. Incorporating BEAMing technology as a liquid biopsy into clinical practice for the management of colorectal cancer patients: an expert taskforce review[J]. Ann Oncol, 2017, 28(12): 2943-2949. doi: 10.1093/annonc/mdx501
    [27] Han X, Han Y, Tan Q, et al. Tracking longitudinal genetic changes of circulating tumor DNA (ctDNA) in advanced Lung adenocarcinoma treated with chemotherapy[J]. J Transl Med, 2019, 17(1): 339. doi: 10.1186/s12967-019-2087-9
    [28] Kinde I, Wu J, Papadopoulos N, et al. Detection and quantification of rare mutations with massively parallel sequencing[J]. Pro Natl Acad Sci U S A, 2011, 108(23): 9530-9535. doi: 10.1073/pnas.1105422108
    [29] Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage[J]. Nat Med, 2014, 20(5): 548-554. doi: 10.1038/nm.3519
    [30] Remon J, Swalduz A, Planchard D, et al. Outcomes in oncogenic-addicted advanced NSCLC patients with actionable mutations identified by liquid biopsy genomic profiling using a tagged ampliconbased NGS assay[J]. PloS One, 2020, 15(6): e0234302. doi: 10.1371/journal.pone.0234302
    [31] Adalsteinsson VA, Ha G, Freeman SS, et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors[J]. Nat Commun, 2017, 8(1): 1324. doi: 10.1038/s41467-017-00965-y
    [32] Martínez-Ricarte F, Mayor R, Martínez-Sáez E, et al. Molecular diagnosis of diffuse gliomas through sequencing of cell-free circulating tumour DNA from cerebrospinal fluid[J]. Clin Cancer Res, 2018, 24 (12): 2812-2819. doi: 10.1158/1078-0432.CCR-17-3800
    [33] Salloum R, McConechy MK, Mikael LG, et al. Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas[J]. Acta Neuropathol Commun, 2017, 5(1): 78. doi: 10.1186/s40478-017-0479-8
    [34] Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies[J]. Sci Transl Med, 2014, 6(224): 224ra24. doi: 10.1126/scitranslmed.3007094
    [35] Wang Y, Springer S, Zhang M, et al. Detection of tumor- derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord[J]. Proc Natl Acad Sci U S A, 2015, 112(31): 9704-9709. doi: 10.1073/pnas.1511694112
    [36] 禹金良, 盛致远, 高玉帅, 等. CSF-ctDNA与TIF-ctDNA检测在脑胶质瘤中的临床应用研究[J]. 中国肿瘤临床, 2020, 47(16): 817-822. doi: 10.3969/j.issn.1000-8179.2020.16.654
    [37] Piccioni DE, Achrol AS, Kiedrowski LA, et al. Analysis of cell-free circulating tumor DNA in 419 patients with glioblastoma and other primary brain tumors[J]. CNS Oncol, 2019, 8(2): CNS34. doi: 10.2217/cns-2018-0015
    [38] Mattos-Arruda LD, Mayor R, Ng CKY, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma[J]. Nat Commun, 2015, 10(6): 8839. http://pubmedcentralcanada.ca/pmcc/articles/PMC5426516/
    [39] Pentsova EI, Shah RH, Tang J, et al. Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid[J]. J Clin Oncol, 2016, 34(20): 2404-2415. doi: 10.1200/JCO.2016.66.6487
    [40] Miller AM, Shah RH, Pentsova EI, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid[J]. Nature, 2019, 565(7741): 654-658. doi: 10.1038/s41586-019-0882-3
    [41] Pan C, Diplas BH, Chen X, et al. Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA[J]. Acta Neuropathol, 2019, 137(2): 297-306. doi: 10.1007/s00401-018-1936-6
    [42] Zhao Z, Zhang C, Li M, et al. Applications of cerebrospinal fluid circulating tumor DNA in the diagnosis of gliomas[J]. Jpn J Clin Oncol, 2020, 50(3): 325-332. doi: 10.1093/jjco/hyz156
  • 加载中
表(1)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  63
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-16
  • 刊出日期:  2021-04-15

目录

    /

    返回文章
    返回