Progress in immune microenvironment and immunotherapy of driver gene negative advanced non-small cell lung cancer patients with brain metastases
-
摘要: 远端转移是晚期非小细胞肺癌(non-small cell lung cancer,NSCLC)患者难以避免的并发症,脑转移(brain metastases,BM)是此类患者最常见的转移部位之一。脑转移患者可能出现头痛、视物模糊、偏瘫、肢体麻木等症状,生存质量受到严重影响。脑转移患者通常预后较差,自然中位生存期仅有3个月左右。传统上,针对驱动基因阴性NSCLC脑转移的治疗策略有局部干预的外科手术、放射治疗及系统性干预的化疗等,而有明确基因突变如EGFR、ALK、ROS1等的患者可采用新一代靶向药物治疗,但两类患者颅内治疗疗效均欠佳。免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)的出现为晚期肺癌的治疗带来新希望,其在黑色素瘤及肺癌脑转移患者中观察到了一定疗效。脑转移瘤的血管与正常脑血管存在显著差异。不同于肺部原发病灶,脑转移瘤具有独特的肿瘤微环境、免疫细胞特征及血管结构,无论是免疫单药治疗还是免疫联合治疗对肺癌脑转移患者均有效。由于难以获得脑组织样本,免疫治疗的生物标志物的研究受到限制。除了肿瘤细胞程序性死亡-配体1(programmed cell death ligand-1,PD-L1)外,肿瘤突变负荷(tumor mutation burden,TMB)可能是预测免疫治疗疗效的潜在生物标志物。本文梳理脑部肿瘤的微环境特征,回顾ICIs治疗相关研究进展,拟为驱动基因阴性NSCLC脑转移患者的治疗提供参考。Abstract: Distant metastases are inevitable in patients with advanced non-small cell lung cancer (NSCLC), and the brain is one of the most common site of metastasis. Patients who suffer brain metastases (BM) may have headaches, blurred vision, hemiplegia, limb numbness, and other symptoms. Quality of life is severely impacted for these patients. Previous studies have shown that prognosis for patients with BM is usually very poor, and natural median survival time is only about 3 months. Traditional treatment strategies for driver-gene negative NSCLC patients with BM include local intervention surgery, radiotherapy, and systemic chemotherapy. New generation targeted drugs can be used for patients with gene mutations such as EGFR, ALK, and ROS1. However, the efficacy of both approaches has not been optimized in patients with BM. Immunotherapy based on immune checkpoint inhibitors (ICIs) has brought new hope to patients with advanced NSCLC. A large number of randomized clinical trials have shown that the application of ICIs on melanoma and NSCLC patients with BM can produce amazing anti-tumor effects compared with chemotherapy. Studies have confirmed that the vasculature in BM is significantly different from normal cerebral vasculature. BM also establish a unique tumor microenvironment, and unique immune cell components and functions. The characteristics of immune cells infiltrating metastases are different from those infiltrating primary lesions. In addition, several retrospective studies have found that either immune-monotherapy or combined immunotherapy is effective in lung cancer patients with BM. Research into predictive biomarkers for assessing the efficacy of immunotherapy is hampered by the difficulty of obtaining brain tissue samples. In addition to programmed cell death ligand-1 (PD-L1) expression in tumor cells, tumor mutation burden (TMB) may be a potential biomarker to predict the efficacy of immunotherapy. This review focuses on tumor microenvironment of NSCLC metastases, and surveys progress in ICI therapies, to provide a reference for the treatment of NSCLC patients with BM.
-
晚期非小细胞肺癌(non-small cell lung cancer,NSCLC)患者中,约10%~20%的患者在初诊时即存在脑转移(brain metastases,BM),20%~40%的患者在疾病发展过程中出现脑转移[1]。肺癌脑转移的发生影响患者的预后及生存质量,患者可存在头痛、偏瘫、言语障碍等神经功能受损症状。目前,临床针对此类患者以局部治疗为主,如立体定向放射治疗(stereotactic radiotherapy,SRT)或全脑放射治疗(whole brain radiation therapy,WBRT)为主,然而这些治疗并不能完全满足临床需求。
随着免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)的应用,晚期肺癌患者的生存较以往有了较大的提升,一线接受ICIs治疗的患者5年生存率达23.2%[2-3]。然而,前瞻性临床试验往往将有症状和(或)接受过激素治疗的脑转移患者排除在外。真实世界研究则显示,无论是黑色素瘤还是肺癌,伴有脑转移的患者仍有部分能从免疫治疗中获益。因此,本文将围绕驱动基因阴性肺癌脑转移的免疫微环境及临床研究证据进行回顾,以期为免疫治疗在肺癌脑转移中的应用及进一步提高疗效和预后提供思路。
1. 脑转移灶免疫微环境的特点
1.1 正常脑血管与脑转移病灶内脑血管
脑血管与神经实质细胞如神经元等共同组成神经血管单元(neurovascular unit,NVU)来维持脑组织的稳态[4]。肿瘤细胞破坏了血脑屏障(blood-brain barrier,BBB)的完整性,在NVU中逐渐取代周细胞和星形胶质细胞,内皮细胞变得肥大,紧密连接被破坏,ZO-1、Occludin、Claudins等缝隙蛋白表达减少,内皮间隙增大,血管内皮生长因子(vascular endothelial growth factor receptor,VEGFR)表达增加,形成大量增殖但异常的肿瘤血管[5-6]。与其他常见的转移部位如骨骼、肝脏、肾上腺相比,脑组织的氧含量相对较低,而葡萄糖的代谢率高,肿瘤细胞可以通过激活HIF-1α途径来适应乏氧的环境[7]。
1.2 脑转移肿瘤细胞中的生物标志物
1.2.1 程序性死亡蛋白受体1
Berghoff等[8]在包括了116例肺癌在内的多种肿瘤患者脑转移灶标本中发现28.4%的脑转移灶中表达程序性死亡蛋白受体1(programmed cell death ligand-1,PD-L1)(≥5%)。另有研究发现,脑转移灶内PD-L1阳性的样本占23.6%(cut-off值为1%)[9]。Takamori等[10]分析了NSCLC脑转移灶PD-L1表达水平与临床结局之间的关系,发现PD-L1阳性(≥5%)BM组与PD-L1阴性BM组相比,脑部无病生存期(disease-free survival,DFS)明显缩短。脑组织内PD-L1表达水平能否作为伴有脑转移患者免疫治疗优势人群的生物标志物有待进一步研究:1)大部分伴有脑转移的患者不适合行外科手术治疗,脑内标本不易获取;2)脑内转移灶PD-L1的表达水平与肺部原发病灶并不完全一致。
1.2.2 肿瘤突变负荷
肿瘤突变负荷(tumor mutation burden,TMB)在泛肿瘤中被认为是与免疫疗效相关的预测新生抗原的替代指标,是继PD-L1之后被认为免疫疗效预测的生物标志物之一[11]。Mansfield等[12]发现脑转移瘤的TMB明显高于肺部原发病灶。肺癌原发灶中TMB与T细胞丰度之间不相关,但脑转移灶中T细胞丰度与TMB相关。虽然脑转移灶中TMB更高,但与肺癌原发病灶相比,新抗原负荷差异无统计学意义。
1.3 脑转移灶微环境中免疫细胞特点
1.3.1 免疫细胞的浸润和组成
中枢神经系统受血脑屏障和血-脑脊液屏障(blood-CSF barrier)的保护,属于免疫豁免器官。一项包括了黑色素瘤及肺癌脑转移病例的研究发现,99.1%的脑转移病灶中存在肿瘤浸润淋巴细胞(tumor-infiltrating lymphocytes,TILs)[8]。Berghoff等[8]在脑转移灶标本中发现TILs包括CD3+T细胞及CD8+T细胞。Klemm等[13]通过流式细胞术、RNA测序、蛋白质阵列等技术全面分析了脑组织及肺癌脑转移中免疫细胞的组成,发现小胶质细胞在正常脑组织的免疫细胞中占主导地位(>80%),而CD4+T细胞和CD8+T细胞占比较少(<10%)。然而,肺癌脑转移灶中免疫细胞的组成以单核细胞源性巨噬细胞(monocyte-derived macrophages,MDMs)、嗜中性粒细胞、CD4+T和CD8+T细胞为主(>70%),小胶质细胞约占10%,其他免疫细胞如树突状细胞及自然杀伤细胞较原发病灶有所增多。
另外,脑转移灶肿瘤细胞的PD-L1表达水平或TILs与原发病灶不一致。Mansfield等[14]分析了73例肺癌脑转移患者的146个肺原发灶和脑转移灶配对样本,14%(10例)脑转移灶内肿瘤细胞PD-L1表达与肺部原发病灶不一致,26%(19例)的样本中PD-L1表达与原发病灶不一致。当把脑内肿瘤微环境中PD-L1和TILs共同作为研究对象时,即使肺部原发病灶中二者均为阳性,也有许多脑转移灶内或者PD-L1表达阴性或者TILs阴性,甚至二者均为阴性,且具有统计学意义。Mansfield等[12]在另一项研究中发现,尽管在脑转移性病灶中观察到更高的TMB,但脑转移中的T细胞浸润远少于肺部原发病灶。
同时,脑转移灶免疫细胞的浸润受自身状态、治疗方式等多种因素影响。Taggart等[15]对比了PD-1或细胞毒性T淋巴细胞相关蛋白4(cytotoxic T-lymphocyte associated protein 4,CTLA-4)抑制剂单药治疗黑色素瘤脑转移前后免疫微环境的变化,结果显示,小鼠接受ICIs治疗后,脑转移灶血管上血管细胞黏附分子1(vascular cell adhesion molecule 1,VCAM1)和细胞间黏附分子1(intercellular adhesion molecule 1,ICAM1)分别上调6.4倍和3.8倍,且CD8+T细胞大量增加,但T细胞的增加并非瘤内CD8+T细胞增殖,而是外周T细胞进入脑内。即使对于颅外病灶,ICIs也并非通过重新激活肿瘤微环境中耗竭的CD8+T细胞起作用,而是通过招募外周活化的T细胞来杀灭肿瘤细胞[16]。
有研究根据病灶的免疫细胞浸润程度将肿瘤分为“冷”肿瘤和“热”肿瘤,“热”肿瘤意味着更多免疫细胞浸润。García-Mulero等[17]发现无论原发病灶类型(包括NSCLC),脑转移内并不缺乏免疫细胞浸润,但这些免疫细胞属于“耗竭”细胞。未来NSCLC脑转移的免疫表型需要更进一步的研究。
1.3.2 特有免疫细胞成分及其功能
脑转移灶中占大多数的巨噬细胞也被称为肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs),约为肿瘤体积的30%[18]。TAMs和脑内肿瘤细胞之间具有双向调节作用:一方面,肿瘤细胞释放多种细胞因子将TAMs招募到微环境中;另一方面,TAMs提供促进肿瘤细胞生长的细胞因子[19-20]。中枢神经系统内还存在着其他“特化的”巨噬细胞,如脑血管旁巨噬细胞、脑膜巨噬细胞、脉络膜巨噬细胞等。这些细胞的定位和转录组学特征和外周巨噬细胞存在差异,由于其位于血管-中枢神经系统交界,因此可能协助肿瘤细胞外渗至脑实质。
脑转移瘤内的树突状细胞具有强大的抗原递呈能力,可将肿瘤抗原呈递给T细胞,从而引起抗肿瘤免疫反应,而肿瘤细胞释放到微环境中的因子,如活性氧(reactive oxygen species,ROS)或损伤相关分子模式(damage-associated molecular patterns,DAMPs),可进一步增强上述过程[21]。
星形胶质细胞是中枢神经系统特有的细胞,既往认为其在清除肿瘤细胞维护脑内环境的稳定中具有重要作用。研究显示,原发肿瘤与骨、肺等其他常见继发转移部位相比,在已形成的脑转移灶中,抑癌基因PTEN的表达明显下调,同时来自星形胶质细胞的外泌体中的miRNA能够抑制脑转移细胞内PTEN的表达,从而增强PI3K信号转导,导致肿瘤细胞生长[22]。另外,肿瘤细胞也可与星形胶质细胞建立缝隙连接,向星形胶质细胞输送钙和环状鸟苷酸腺苷酸(cyclic GMP-AMP,cGAMP)导致多种细胞因子释放,促进肿瘤细胞增殖[23]。肿瘤细胞还可通过和神经突触形成“假三联结构”促进自身的生长[24]。
小胶质细胞作为一种脑内驻留的、参与固有免疫的“哨兵”细胞,与星形胶质细胞等一起维持脑内微环境的稳态。作为脑内能够随时感应任何变化并且快速做出应答的细胞,小胶质细胞在脑损伤或感染时的脑保护方面发挥重要作用。然而,在肿瘤细胞进入脑内并定植的过程中,小胶质细胞并不能“精准”识别肿瘤细胞并且清除,相反,还会分泌一些细胞因子如集落刺激因子来招募外周的单核细胞,并与这些细胞一起形成促肿瘤生长的环境,而肿瘤细胞也会表达CCL2(CC-chemokine ligand 2,CCL2)等趋化因子,使得小胶质细胞进入脑转移瘤内[25]。
综上所述,了解脑转移瘤微环境的特殊性,可帮助理解脑转移灶肿瘤细胞及免疫细胞间相互作用机制,也可深入了解原发灶和脑转移灶之间的内在联系,从而寻找系统性治疗和局部治疗的最佳序贯或联合方式,进一步提升患者的临床疗效。
2. 驱动基因阴性NSCLC脑转移免疫治疗的相关临床数据
2.1 免疫单药治疗
前瞻性临床研究通常将有症状和(或)接受过激素治疗的NSCLC脑转移患者排除在外[26-27],仅在一些研究中有经治和无症状脑转移患者的亚组数据。Keynote-024研究显示,有脑转移的患者疾病进展风险下降45%,无脑转移患者PFS风险下降50%,提示脑转移患者也可从ICIs单药治疗中获益[28]。而在一项帕博利珠单抗用于黑色素瘤及NSCLC脑转移患者的Ⅱ期临床研究中,NSCLC脑转移患者的应答率达33%[29]。更新的数据显示,NSCLC队列中纳入了42例基线脑转移患者,37例患者PD-L1≥1%,其中11例(29.7%)脑内病灶出现应答,其中7例达到部分缓解,4例达到完全缓解。这一队列患者的2年总生存(overall survival,OS)率为34%,超过既往NSCLC脑转移患者的2年OS率(14.3%)[30]。OAK研究数据再一次证明了该结论[31]。此外,一项纳入欧洲6个中心1 052例患者的回顾性研究显示,有脑转移和无脑转移的患者总体客观反应率(objective response rate,ORR)分别为20.6%和22.7%,颅内ORR为27.3%,颅内疾病控制率(disease control rate,DCR)为60.3%[32]。这提示ICIs对于NSCLC脑转移患者的颅内ORR和颅外大致相当,说明免疫单药治疗不仅可使此类患者获益,而且脑内病灶与原发病灶均可获益。
2.2 免疫联合治疗
CheckMate-227研究中,纳武利尤单抗联合伊匹木单抗一线治疗转移性NSCLC能持续改善患者的OS及PFS。与单独化疗相比,纳武单抗联合伊匹木单抗在不考虑PD-L1表达状态的情况下,为TMB≥10 mut/mb的NSCLC患者带来获益[33]。CheckMate-204评估了纳武利尤单抗联合伊匹木单抗对有症状及无症状黑色素瘤脑转移患者的疗效,其中无症状的颅内和颅外6个月PFS为分别为63%和72%,有症状的患者颅内和颅外6个月PFS分别为19%和29%[34],数据表明,无论有症状还是无症状的脑转移患者,颅内病灶均能对双免疫治疗产生应答,但有症状患者颅内6个月PFS率(无论颅内还是颅外)明显低于无症状患者,原因可能与随访时间及激素的应用有关。
临床前研究显示,ICIs联合化疗对肿瘤细胞有协同杀伤作用,化疗可促使肿瘤细胞死亡进而增强免疫系统对肿瘤细胞的识别能力,还可以减少免疫抑制的肿瘤微环境[35]。Keynote-189研究的免疫治疗联合化疗组中,有脑转移患者比无脑转移患者的死亡风险分别下降64%和58%,而疾病进展风险分别下降58%和47%[36]。更新的结果显示,基线有肝或脑转移患者的临床结局与整组类似,在肝(n=115)或脑(n=108)转移患者亚组中,免疫联合化疗组与安慰剂组均观察到OS获益,其中有脑转移的患者死亡风险下降59%,而无脑转移患者死亡风险下降41%[37]。提示相对于无脑转移患者,有脑转移的患者更能从联合治疗中获益,但由于脑转移患者入组数仅108例,且排除了有症状及接受过激素治疗的患者,仍需前瞻性研究加以验证。
既往认为抗血管生成药物主要用于抑制肿瘤血管生成。近年来发现,抗血管生成药物同时也具有免疫调节的作用,包括抗原呈递以及T细胞激活,甚至抑制VEGF后导致肿瘤内T细胞浸润增加[38]。IMpower150研究结果证实,阿替利珠单抗联合贝伐珠单抗、紫杉醇、卡铂四药方案(ABCP)较无阿替利珠的对照组(BCP)有延迟发生脑转移的趋势[39],但阿替利珠单抗联合紫杉醇卡铂组(ACP)新发脑转移的发生率较高。该研究提示抗血管药物联合免疫治疗在脑转移患者中可能有一定的应用前景。
与免疫联合化疗类似,放疗也可和免疫治疗起到协同作用。Ahmed等[40]回顾性分析了NSCLC脑转移患者免疫治疗前、中、后接受放疗对脑转移疗效的影响,结果表明在抗PD-1/PD-L1治疗期间或之前接受放疗的患者,脑内病灶6个月疾病控制率为57%,而在免疫治疗之后接受立体定向放射(stereotactic radiosurgery,SRS)治疗的患者,6个月的脑内病灶DCR为0。有研究[41]则发现,局部放疗联合免疫治疗可使NSCLC脑转移患者5年PFS率达8%。提示放疗可增强免疫治疗疗效。但以上研究样本量偏少,降低了结论的可信度,如Ahmed等[40]的研究中,免疫治疗之后接受SRS治疗的患者,6个月脑内DCR为0,本研究中免疫治疗对于脑内病灶无明显效果,然而不同研究之间存在差异,可能与不同的研究设计及样本量有关。
3. 脑转移患者预后评估工具
脑肿瘤独立递归分级(recursive partitioning analysis,RPA)、脑转移瘤基本分级(basic score for brain metastases,BSBM)和诊断特异评估预后分级(diagnosis-specific graded prognostic assessment,DS-GPA)以及Lung-molGPA模型[42]是应用于脑转移的预后分级标准及相关模型。Lung-molGPA用于有驱动基因突变的患者中,而在驱动基因阴性NSCLC脑转移患者中应用较广泛且较准确的预后分级工具是DS-GPA。NSCLC脑转移DS-GPA包括年龄、Karnofsky评分、颅外转移、脑转移数目。一项纳入欧洲6个中心的回顾性分析显示,DS-GPA评分在1.5~2.5分的患者较评分在0~1分之间的疾病进展风险以及死亡风险分别降低45%和52%[32]。DS-GPA在预后评估方面不仅方便实施,而且准确度较高,但目前仍缺乏将其应用于肺癌脑转移免疫治疗的评价中,未来可探索DS-GPA作为筛选以上人群接受免疫治疗优势人群的工具。
4. 结语与展望
ICIs在肿瘤治疗领域取得突破性进展,晚期驱动基因阴性NSCLC脑转移患者的治疗也因此展现了新希望。免疫微环境是影响ICIs疗效的重要因素,探索肺癌脑转移灶免疫微环境对进一步提高疗效和预后具有重要意义,针对脑转移灶免疫微环境的研究尚需进一步拓展,期待新的临床研究以及新的免疫联合治疗模式对这部分人群患者临床结局的进一步提升。
-
[1] Lamba N, Kearney RB, Catalano PJ, et al. Population-based estimates of survival among elderly patients with brain metastases[J]. Neuro Oncol, 2021, 23(4):661-676. DOI: 10.1093/neuonc/noaa233
[2] Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer[J]. N Engl J Med, 2015, 373(17):1627-1639. DOI: 10.1056/NEJMoa1507643
[3] Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer[J]. N Engl J Med, 2015, 373(2):123-135. DOI: 10.1056/NEJMoa1504627
[4] Hempel C, Johnsen KB, Kostrikov S, et al. Brain tumor vessels-a barrier for drug delivery[J]. Cancer Metastasis Rev, 2020, 39(3):959-968.
[5] Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1):26-41. DOI: 10.1038/s41568-019-0205-x
[6] Masuda C, Sugimoto M, Wakita D, et al. Bevacizumab suppresses the growth of established non-small-cell lung cancer brain metastases in a hematogenous brain metastasis model[J]. Clin Exp Metastasis, 2020, 37(1):199-207. DOI: 10.1007/s10585-019-10008-z
[7] Ebright RY, Zachariah MA, Micalizzi DS, et al. HIF1A signaling selectively supports proliferation of breast cancer in the brain[J]. Nat Commun, 2020, 11(1):6311. DOI: 10.1038/s41467-020-20144-w
[8] Berghoff AS, Fuchs E, Ricken G, et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases[J]. Oncoimmunology, 2016, 5(1):e1057388. DOI: 10.1080/2162402X.2015.1057388
[9] Camy F, Karpathiou G, Dumollard JM, et al. Brain metastasis PD-L1 and CD8 expression is dependent on primary tumor type and its PD-L1 and CD8 status[J]. J Immunother Cancer, 2020, 8(2):e000597.
[10] Takamori S, Toyokawa G, Okamoto I, et al. Clinical significance of PD-L1 expression in brain metastases from non-small cell lung cancer[J]. Anticancer Res, 2018, 38(1):553-557.
[11] Campbell BB, Light N, Fabrizio D, et al. Comprehensive analysis of hypermutation in human cancer[J]. Cell, 2017, 171(5):1042-1056. DOI: 10.1016/j.cell.2017.09.048
[12] Mansfield AS, Ren H, Sutor S, et al. Contraction of T cell richness in lung cancer brain metastases[J]. Sci Rep, 2018, 8(1):2171. DOI: 10.1038/s41598-018-20622-8
[13] Klemm F, Maas RR, Bowman RL, et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells[J]. Cell, 2020, 181(7):1643-1660. DOI: 10.1016/j.cell.2020.05.007
[14] Mansfield AS, Aubry MC, Moser JC, et al. Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer[J]. Ann Oncol, 2016, 27(10):1953-1958. DOI: 10.1093/annonc/mdw289
[15] Taggart D, Andreou T, Scott KJ, et al. Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8(+) T cell trafficking[J]. Proc Natl Acad Sci U S A, 2018, 115(7):E1540-E1549. DOI: 10.1073/pnas.1714089115
[16] Yost KE, Satpathy AT, Wells DK, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade[J]. Nat Med, 2019, 25(8):1251-1259.
[17] García-Mulero S, Alonso MH, Pardo J, et al. Lung metastases share common immune features regardless of primary tumor origin[J]. J Immunother Cancer, 2020, 8(1):e000491. DOI: 10.1136/jitc-2019-000491
[18] Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors[J]. Glia, 2002, 40(2):252-259. DOI: 10.1002/glia.10147
[19] Sevenich L, Bowman RL, Mason SD, et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S[J]. Nat Cell Biol, 2014, 16(9):876-888. DOI: 10.1038/ncb3011
[20] Pukrop T, Dehghani F, Chuang HN, et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way[J]. Glia, 2010, 58(12):1477-1489. DOI: 10.1002/glia.21022
[21] Quail DF, Joyce JA. The microenvironmental landscape of brain tumors[J]. Cancer Cell, 2017, 31(3):326-341. DOI: 10.1016/j.ccell.2017.02.009
[22] Zhang L, Zhang S, Yao J, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth[J]. Nature, 2015, 527(7576):100-104. DOI: 10.1038/nature15376
[23] Chen Q, Boire A, Jin X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer[J]. Nature, 2016, 533(7604):493-498. DOI: 10.1038/nature18268
[24] Zeng Q, Michael IP, Zhang P, et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis[J]. Nature, 2019, 573(7775):526-531. DOI: 10.1038/s41586-019-1576-6
[25] You H, Baluszek S, Kaminska B. Immune microenvironment of brain metastases-are microglia and other brain macrophages little helpers[J]? Front Immunol, 2019, 10:1941.
[26] Cheng H, Perez-Soler R. Leptomeningeal metastases in non-small-cell lung cancer[J]. Lancet Oncol, 2018, 19(1):e43-e55. DOI: 10.1016/S1470-2045(17)30689-7
[27] Kathryn C. Arbour LM, Niamh Long et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non–small-cell lung cancer[J]. J Clin Oncol, 2018, 36(28):2872-2878. DOI: 10.1200/JCO.2018.79.0006
[28] Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016, 375(19):1823-1833. DOI: 10.1056/NEJMoa1606774
[29] Goldberg SB, Gettinger SN, Mahajan A, et al. Pembrolizumab for patients with melanoma or non-small cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial[J]. Lancet Oncol, 2016, 17(7):976-983. DOI: 10.1016/S1470-2045(16)30053-5
[30] Goldberg SB, Schalper KA, Gettinger SN, et al. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial[J]. Lancet Oncol, 2020, 21(5):655-663. DOI: 10.1016/S1470-2045(20)30111-X
[31] Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial[J]. Lancet, 2017, 389(10066):255-265. DOI: 10.1016/S0140-6736(16)32517-X
[32] Hendriks LEL, Henon C, Auclin E, et al. Outcome of patients with non-small cell lung cancer and brain metastases treated with checkpoint inhibitors[J]. J Thorac Oncol, 2019, 14(7):1244-1254. DOI: 10.1016/j.jtho.2019.02.009
[33] Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. N Engl J Med, 2018, 378(22):2093-2104. DOI: 10.1056/NEJMoa1801946
[34] Tawbi HA, Forsyth PA, Algazi A, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain[J]. N Engl J Med, 2018, 379(8):722-730. DOI: 10.1056/NEJMoa1805453
[35] Leonetti A, Wever B, Mazzaschi G, et al. Molecular basis and rationale for combining immune checkpoint inhibitors with chemotherapy in non-small cell lung cancer[J]. Drug Resist Updat, 2019, 46:100644. DOI: 10.1016/j.drup.2019.100644
[36] Gandhi L, Rodriguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(22):2078-2092. DOI: 10.1056/NEJMoa1801005
[37] Gadgeel S, Rodriguez-Abreu D, Speranza G, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small cell lung cancer[J]. J Clin Oncol, 2020, 38(14):1505-1517. DOI: 10.1200/JCO.19.03136
[38] Chen DS, Hurwitz H. Combinations of bevacizumab with cancer immunotherapy[J]. Cancer J, 2018, 24(4):193-204. DOI: 10.1097/PPO.0000000000000327
[39] Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC[J]. N Engl J Med, 2018, 378(24):2288-2301. DOI: 10.1056/NEJMoa1716948
[40] Ahmed KA, Kim S, Arrington J, et al. Outcomes targeting the PD-1/PD-L1 axis in conjunction with stereotactic radiation for patients with non-small cell lung cancer brain metastases[J]. J Neurooncol, 2017, 133(2):331-338. DOI: 10.1007/s11060-017-2437-5
[41] De Ruysscher D, Wanders R, Hendriks LE, et al. Progression-free survival and overall survival beyond 5 years of nsclc patients with synchronous oligometastases treated in a prospective phase Ⅱ trial (NCT 01282450)[J]. J Thorac Oncol, 2018, 13(12):1958-1961. DOI: 10.1016/j.jtho.2018.07.098
[42] Chen K, Yu X, Zhang F, et al. Applicability of the lung-molGPA index in non-small cell lung cancer patients with different gene alterations and brain metastases[J]. Lung Cancer, 2018, 125:8-13. DOI: 10.1016/j.lungcan.2018.08.023
-
期刊类型引用(7)
1. 杨迎春. 特瑞普利单抗联合TP化疗方案治疗老年晚期NSCLC伴TP53基因突变患者的效果. 中国民康医学. 2025(07): 54-56+60 . 百度学术
2. 姜军选,方圆. 补中益气汤在驱动基因阴性NSCLC免疫治疗中的应用价值. 国际医药卫生导报. 2024(02): 305-309 . 百度学术
3. 李笑萍,王江涛,花小梅. 安罗替尼联合免疫检查点抑制剂二线及以上治疗驱动基因阴性晚期非小细胞肺癌的疗效和安全性. 癌症进展. 2024(06): 644-647 . 百度学术
4. 梁丹,张又红,苏天海,冯波,杨相辉,王桂华. 分次立体定向放疗同步化疗联合贝伐珠单抗治疗肺癌脑转移的疗效及安全性. 中南药学. 2023(03): 823-827 . 百度学术
5. 陈旭澜,李泞甫,肖剑波,杨明俊,皈燕. 非小细胞肺癌脑转移的免疫治疗现状及进展. 中国临床研究. 2023(06): 821-826 . 百度学术
6. 万畅,庞静丹,吴正升,王斌,薛璟,杜瀛瀛. 非小细胞肺癌脑转移免疫微环境、临床病理特征分析. 临床与实验病理学杂志. 2023(11): 1316-1321 . 百度学术
7. 孟安娜,李杨,张雯,魏晓为. 阿帕替尼联合紫杉醇及顺铂化疗方案用于驱动基因阴性晚期非小细胞肺癌的疗效及相关因素分析. 大医生. 2023(23): 8-11 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 289
- HTML全文浏览量: 186
- PDF下载量: 105
- 被引次数: 9