Current challenges and optimization strategies for CAR-T cell therapy for solid tumors
-
摘要: 近年来,嵌合抗原受体T细胞(chimeric antigen receptor T-cell,CAR-T)疗法在血液肿瘤治疗中取得了突破性进展。然而,由于实体瘤异于血液肿瘤的特性,CAR-T在实体瘤治疗中并未取得很好的疗效。限制CAR-T疗效的关键因素主要包括实体瘤细胞本身及其特殊的肿瘤微环境(tumor microenvironment,TME)两方面,在CAR-T向肿瘤组织部位浸润、CAR-T在TME中维持抗肿瘤活性以及CAR-T对肿瘤细胞的靶向性识别杀伤等多个过程中损害CAR-T功能。为了解决这些问题,越来越多的临床前研究提出了潜在有效的解决办法,相应的临床研究也相继开展。本文将对CAR-T细胞治疗实体瘤的现存挑战及相应的优化策略进行综述,以期为CAR-T疗法的未来探索提供参考。Abstract: The sequential launch of chimeric antigen receptor T-cell (CAR-T cell) therapy products caused a breakthrough in the treatment of hematological tumors. However, owing to the differences in properties between solid tumors and hematological tumors, CAR-T cell shave not been used much in the treatment of solid tumors. Solid tumor cells themselves and their distinctive tumor microenvironment (TME) are two crucial factors limiting the efficacy of CAR-T cells by impairing their function in multiple processes, including their infiltration into the tumor site, maintenance of their anti-antitumor activity in the TME, and targeted recognition killing of tumor cells. To address these problems, an increasing number of preclinical studies have proposed potential effective solutions, and corresponding clinical studies also have been carried out. This manuscript focuses on reviewing the existing challenges and corresponding optimization strategies for CAR-T cells in solid tumor treatment, aiming to provide a reference for future exploration of its applications.
-
患者女性,57岁,无吸烟史。因咳痰伴痰中带血1个月于2012年3月就诊陆军总医院,PET-CT检查提示:右肺癌,肺门、纵隔多发淋巴结转移,L2骨转移。免疫组织化学检测:肺来源可能性大。心包积液检测示:查见鳞癌(图 1),EGFR基因突变阴性。诊断为:1)右肺鳞癌Ⅳ期(pT4N3M1),肺门、纵隔多发淋巴结转移癌,骨转移癌,心包积液。2)高血压Ⅲ级高危。患者拒绝放、化疗,服用靶向药物治疗。遂于2012年3月开始口服靶向药物吉非替尼250 mg qd。2个月疗效评价:疗效稳定(SD),见图 2。2015年7月患者出现腰部疼痛,2015年9月16日复查胸部CT示:双肺部多发结节,右肺部结节明显增大。考虑其为缓慢进展,继续给予患者服用吉非替尼并加用甲磺酸阿帕替尼500 mg qd。因患者为高血压Ⅲ级,服阿帕替尼期间严密监测患者血压、定期复查尿常规。患者耐受情况好,未见明显不良反应。2个月后复查CT示:肺部,疗效评价病灶稳定(SD),见图 3。患者2016年2月5日因出现头痛、四肢抽搐,外院胸部CT提示病变进展(PD)。阿帕替尼无疾病生存期为5个月余。经激素、利尿、放疗对症治疗后,头痛及四肢抽搐缓解,改行阿帕替尼联合AZD9291治疗。2016年3月7日患者复查骨扫描未见新发骨转移癌灶,胸部CT提示肺病灶未见增大,疗效评价SD,现患者正在随访中。
小结 阿帕替尼对肺鳞癌的疗效尚不明确。针对非小细胞肺癌(NSCLC),一项Ⅱ期临床试验纳入135例非鳞非小细胞肺癌患者,随机以2:1的比例口服阿帕替尼750 mg qd和安慰剂,结果显示阿帕替尼组的中位无疾病进展生存期优于安慰剂组(4.7个月vs.1.9个月,HR 0.278,95%CI:0.170~0.455,P < 0.000 1)。阿帕替尼组的有效率为12.2%(安慰剂组为0),疾病控制率为68.9%(安慰剂组24.4%)(P=0.015 8,P < 0.000 1)。不良反应大多为高血压、蛋白尿以及手-足综合征,但一般为轻度或中度,可耐受[1]。总而言之,阿帕替尼对于晚期非鳞非小细胞肺癌效果显著。而李旭等[2]选取86例晚期NSCLC患者,随机分为2组,治疗组给予甲磺酸阿帕替尼治疗,对照组给予紫杉醇单药化疗随访记录两组患者CEA、CYFRA21-1、VEGF、MMP-9以及疗效情况。结果示阿帕替尼组CEA、CYFRA21-1分别为(14.01±1.04、4.42±0.35)ng/mL,均优于紫杉醇组(18.05±1.86、18.05±1.86)ng/mL(P < 0.05)。阿帕替尼VEGF、MMP-9分别为(285.49±35.47、1008.28±85.16)ng/mL,均优于紫杉醇组(494.82±50.16、1459.54±119.75)ng/mL(P < 0.05)。阿帕替尼组总有效率为95.35%,高于紫杉醇组76.74%(P < 0.05)。
本例为EGFR阴性的肺鳞癌患者,靶向治疗失败后口服阿帕替尼,疗效佳,无疾病生存期长达5个月余。这提示阿帕替尼治疗鳞癌效果依然显著,值得进一步研究和应用。
-
[1] Locke FL, Go WY, Neelapu SS. Development and use of the anti-cd19 chimeric antigen receptor t-cell therapy axicabtageneciloleucel in large b-cell lymphoma: a review[J]. Jama Oncol, 2020, 6(2):281-290. DOI: 10.1001/jamaoncol.2019.3869
[2] Chen N, Li X, Chintala NK, et al. Driving cars on the uneven road of antigen heterogeneity in solid tumors[J]. Curr Opin Immunol, 2018, 51:103-110.
[3] Hou AJ, Chen LC, Chen YY. Navigating car-t cells through the solid-tumour microenvironment[J]. Nat Rev Drug Discov, 2021, 20(7):531-550. DOI: 10.1038/s41573-021-00189-2
[4] Castellarin M, Watanabe K, June CH, et al. Driving cars to the clinic for solid tumors[J]. Gene Ther, 2018, 25(3):165-175. DOI: 10.1038/s41434-018-0007-x
[5] Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of t cells transduced with a chimeric antigen receptor recognizing erbb2[J]. Mol Ther, 2010, 18(4):843-851. DOI: 10.1038/mt.2010.24
[6] Li G, Wong AJ. Egf receptor variant iii as a target antigen for tumor immunotherapy[J]. Expert Rev Vaccines, 2008, 7(7):977-985. DOI: 10.1586/14760584.7.7.977
[7] O’Rourke DM, Nasrallah MP, Morrissette J, et al. Abstract LB-083: Phase I study of T cells redirected to egfrviii with a chimeric antigen receptor in patients with egfrⅧ+ glioblastoma[J]. Cancer Res, 2016, 76(suppl_14): LB-083.
[8] Park AK, Fong Y, Kim SI, et al. Effective combination immunotherapy using oncolytic viruses to deliver car targets to solid tumors[J]. Sci Transl Med, 2020, 12(559):eaaz1863.
[9] Hernandez-Lopez RA, Yu W, Cabral KA, et al. T cell circuits that sense antigen density with an ultrasensitive threshold[J]. Science, 2021, 371(6534):1166--1171. DOI: 10.1126/science.abc1855
[10] Anurathapan U, Chan RC, Hindi HF, et al. Kinetics of tumor destruction by chimeric antigen receptor-modified T cells[J]. Mol Ther, 2014, 22(3):623-633. DOI: 10.1038/mt.2013.262
[11] Kloss CC, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells[J]. Nature Biotechnology, 2013, 31(1):71-75. DOI: 10.1038/nbt.2459
[12] Choe JH, Watchmaker PB, Simic MS, et al. Synnotch-car t cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma[J]. Sci Transl Med, 2021, 13(591):eabe7378.
[13] Choi BD, Yu X, Castano AP, et al. Car-t cells secreting bites circumvent antigen escape without detectable toxicity[J]. Nature Biotechnology, 2019, 37(9):1049-1058. DOI: 10.1038/s41587-019-0192-1
[14] Lohmueller JJ, Ham JD, Kvorjak M, et al. Msa2 affinity-enhanced biotin-binding car t cells for universal tumor targeting[J]. Oncoimmunology, 2018, 7(1):e1368604.
[15] Beatty GL, Moon EK. Chimeric antigen receptor t cells are vulnerable to immunosuppressive mechanisms present within the tumor microenvironment[J]. Oncoimmunology, 2014, 3(11):e970027.
[16] Scharping NE, Delgoffe GM. Tumor microenvironment metabolism: A new checkpoint for anti-tumor immunity[J]. Vaccines (Basel), 2016, 4(4):46.
[17] Guo Y, Feng K, Liu Y, et al. Phase I study of chimeric antigen receptor-modified T cells in patients with egfr-positive advanced biliary tract cancers[J]. Clin Cancer Res, 2018, 24(6):1277-1286. DOI: 10.1158/1078-0432.CCR-17-0432
[18] Murty S, Haile ST, Beinat C, et al. Intravital imaging reveals synergistic effect of car t-cells and radiation therapy in a preclinical immunocompetent glioblastoma model[J]. Oncoimmunology, 2020, 9(1):1757360.
[19] Zhu L, Liu J, Zhou G, et al. Remodeling of tumor microenvironment by tumor-targeting nanozymes enhances immune activation of car T cells for combination therapy[J]. Small, 2021,17(43):e2102624.
[20] Bocca P, Di Carlo E, Caruana I, et al. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of gd2-car T cells in a human neuroblastoma preclinical model[J]. Oncoimmunology, 2018, 7(1):e1378843.
[21] Caruana I, Savoldo B, Hoyos V, et al. Heparanase promotes tumor infiltration and antitumor activity of car-redirected T lymphocytes[J]. Nat Med, 2015, 21(5):524-529. DOI: 10.1038/nm.3833
[22] Lo A, Wang LS, Scholler J, et al. Tumor-promoting desmoplasia is disrupted by depleting fap-expressing stromal cells[J]. Cancer Research, 2015, 75(14):2800-2810. DOI: 10.1158/0008-5472.CAN-14-3041
[23] Watanabe K, Luo Y, Da T, et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor t cells and cytokine-armed oncolytic adenoviruses[J]. JCI Insight, 2018, 3(7):e99573.
[24] Johnson LR, Lee DY, Eacret JS, et al. The immunostimulatory RNA RN7SL1 enables car-t cells to enhance autonomous and endogenous immune function[J]. Cell, 2021, 184(19):4981. DOI: 10.1016/j.cell.2021.08.004
[25] Adusumilli PS, Zauderer MG, Rivière I,et al. A phase Ⅰ trial of regional mesothelin-targeted car t-cell therapy in patients with malignant pleural disease, in combination with the anti-pd-1 agent pembrolizumab[J]. Cancer Discov, 2021, 11(11):2748-2763. DOI: 10.1158/2159-8290.CD-21-0407
[26] Tanoue K, Rosewell Shaw A, Watanabe N, et al. Armed oncolytic adenovirus-expressing PDL-1 mini-body enhances antitumor effects of chimeric antigen receptor t cells in solid tumors[J]. Cancer research, 2017, 77(8):2040-2051. DOI: 10.1158/0008-5472.CAN-16-1577
[27] Zou F, Lu L, Liu J, et al. Engineered triple inhibitory receptor resistance improves anti-tumor car-t cell performance via CD56[J]. Nat Commun, 2019, 10(1)-4109.
[28] Shi X, Zhang D, Li F,et al. Targeting glycosylation of pd-1 to enhance car-t cell cytotoxicity[J]. J Hematol Oncol, 2019, 12(1):127.
[29] Pan Z, Di S, Shi B, et al. Increased antitumor activities of glypican-3-specific chimeric antigen receptor-modified t cells by coexpression of a soluble PDL1-ch3 fusion protein[J]. Cancer Immunol Immun, 2018, 67(10):1621-1634. DOI: 10.1007/s00262-018-2221-1
[30] Masoumi E, Jafarzadeh L, Mirzaei HR, et al. Genetic and pharmacological targeting of a2a receptor improves function of anti-mesothelin car t cells[J]. J Exp Clin Cancer Res, 2020, 39(1):49.
[31] Qu Y, Dunn ZS, Chen X, et al. Adenosine deaminase 1 overexpression enhances the antitumor efficacy of chimeric antigen receptor-engineered t cells[J]. Hum Gene Ther, 2022,33(5-6):223-236.
[32] Huang Q, Xi J, Wang L, et al. Mir-153 suppresses ido1 expression and enhances car t cell immunotherapy[J]. J Hematol Oncol, 2018, 11(1):90.
[33] Fultang L, Booth S, Yogev O, et al. Metabolic engineering against the arginine microenvironment enhances car-t cell proliferation and therapeutic activity[J]. Blood, 2020, 136(10):1155-1160. DOI: 10.1182/blood.2019004500
[34] Cui J, Zhang Q, Song Q, et al. Targeting hypoxia downstream signaling protein, caix, for car t-cell therapy against glioblastoma[J]. Neuro Oncology, 2019, 21(11):1436-1446. DOI: 10.1093/neuonc/noz117
[35] Ligtenberg MA, Mougiakakos D, Mukhopadhyay M, et al. Coexpressed catalase protects chimeric antigen receptor-redirected t cells as well as bystander cells from oxidative stress-induced loss of antitumor activity[J]. J Immunol, 2016, 196(2):759-766. DOI: 10.4049/jimmunol.1401710
-
期刊类型引用(8)
1. 方章兰,江涛. 阿帕替尼治疗肺癌的临床研究进展. 中国新药杂志. 2019(03): 303-307 . 百度学术
2. 杨燕峰,潘琴,王纯. 阿帕替尼联合静脉化疗治疗晚期肺癌相关恶性胸腔积液的疗效观察. 现代肿瘤医学. 2019(06): 990-993 . 百度学术
3. 邓洁,董丽丽,杨茂鹏,王梅. 阿帕替尼联合GP方案化学治疗晚期肺癌患者的近期临床效果及对血清肿瘤标志物的影响. 临床误诊误治. 2018(08): 60-63 . 百度学术
4. 李孟阳,刘丽珠,韩波. 低剂量阿帕替尼治疗晚期恶性肿瘤的临床研究进展. 医学综述. 2018(03): 502-506 . 百度学术
5. 张焕明,陈飞,闵潇莹. 阿帕替尼联合复方红豆杉胶囊治疗晚期非鳞非小细胞肺癌疗效观察. 江苏医药. 2018(10): 1223-1224 . 百度学术
6. 洪彬,曹家明,聂丽,吴敢先. 阿帕替尼对晚期非鳞非小细胞肺癌患者的治疗效果. 中国肿瘤临床与康复. 2018(10): 1200-1203 . 百度学术
7. 王可. 甲磺酸阿帕替尼片治疗晚期非小细胞肺癌的效果分析. 中国医药指南. 2018(34): 52-53 . 百度学术
8. 冯久桓,秦叔逵,王琳. 甲磺酸阿帕替尼的研究现状与进展. 临床肿瘤学杂志. 2017(04): 345-356 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 913
- HTML全文浏览量: 214
- PDF下载量: 133
- 被引次数: 15