基于乳腺X线影像的深度学习模型诊断BI-RADS 4类微钙化良恶性的研究

A mammogram image-based deep learning model for the diagnosis of benign and malignant nature of BI-RADS category four microcalcifications

  • 摘要:
    目的 探讨基于乳腺X线影像的深度学习模型预测乳腺成像报告和数据系统(breast imaging reporting and data system,BI-RADS)中4类乳腺微钙化良恶性的价值。
    方法 回顾性分析2018年1月至2023年1月在天津医科大学肿瘤医院检查并确诊为BI-RADS 4类乳腺病变患者的X线影像资料,共321例患者的543张图像。采用影像组学方法提取微钙化的形状、灰度值、点密度等影像组学特征,并将特征与融入空间注意力机制的ResNet34深度学习模型(SpatialResNet)相融合综合预测微钙化的良恶性。按照7∶3随机将图像分为训练集和测试集,采用受试者工作特征(receiver operating characteristic,ROC)曲线下面积(area under the curve,AUC)、准确性、敏感度、特异性及F1-score评价模型性能,并对4A、4B及4C亚组进行分层分析,同时利用梯度类激活映射进行模型可解释性分析。
    结果 SpatialResNet模型在测试集的AUC、准确性、敏感度、特异性、阳性预测值、阴性预测值和F1值(F1-score)分别为0.884、0.783、0.773、0.816、0.939、0.500和0.870,各项性能指标均优于未引入注意力机制的ResNet34模型。BI-RADS 4类亚组的进一步分析结果显示模型在不同恶性风险程度的亚组中均表现出良好的诊断效能。
    结论 本研究所建立的联合影像组学特征与深度学习空间注意力机制的融合模型能够更好地诊断乳腺BI-RADS 4类微钙化的良恶性。

     

    Abstract:
    Objective  To evaluate a mammographic image-based deep learning model for the prediction of the benign and malignant nature of breast imaging reporting and data system (BI-RADS) category four microcalcifications.
    Methods We retrospectively analyzed 543 mammographic images from 321 patients with pathologically confirmed BI-RADS 4 breast lesions at Tianjin Medical University Cancer Institute & Hospital between January 2018 and January 2023. We extracted radiomics features (including microcalcification shapes, gray-scale values, and point densities) and integrated them into a ResNet34 deep learning model incorporating a spatial attention mechanism (SpatialResNet) to comprehensively predict benign or malignant microcalcifications. We randomly split the dataset into training and test sets at a 7:3 ratio and evaluated model performance using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1-score. We performed subgroup analyses for BI-RADS 4A, 4B, and 4C lesions, and applied gradient-class activation mapping for model interpretability.
    Results The SpatialResNet model achieved an AUC, accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1-score of 0.884, 0.783, 0.773, 0.816, 0.500, 0.939, and 0.870 on the test set, respectively, outperforming the ResNet34 model without the attention mechanism across all metrics. Further subgroup analysis demonstrated that the model maintained robust diagnostic performance across BI-RADS 4 subcategories with varying risks of malignancy.
    Conclusions The fusion model of combined radiomics features and deep learning spatial attention mechanism we established in this study allows for better distinction of the benign and malignant nature of breast BI-RADS type 4 microcalcifications.

     

/

返回文章
返回