结直肠癌免疫检查点抑制剂治疗相关预测性标志物的研究进展

杨长江 赵龙 林易霖 叶颖江 王杉 申占龙

杨长江, 赵龙, 林易霖, 叶颖江, 王杉, 申占龙. 结直肠癌免疫检查点抑制剂治疗相关预测性标志物的研究进展[J]. 中国肿瘤临床, 2023, 50(6): 296-301. doi: 10.12354/j.issn.1000-8179.2023.20221111
引用本文: 杨长江, 赵龙, 林易霖, 叶颖江, 王杉, 申占龙. 结直肠癌免疫检查点抑制剂治疗相关预测性标志物的研究进展[J]. 中国肿瘤临床, 2023, 50(6): 296-301. doi: 10.12354/j.issn.1000-8179.2023.20221111
Changjiang Yang, Long Zhao, Yilin Lin, Yingjiang Ye, Shan Wang, Zhanlong Shen. Research progress of predictive markers related to immune checkpoint inhibitor therapy for colorectal cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(6): 296-301. doi: 10.12354/j.issn.1000-8179.2023.20221111
Citation: Changjiang Yang, Long Zhao, Yilin Lin, Yingjiang Ye, Shan Wang, Zhanlong Shen. Research progress of predictive markers related to immune checkpoint inhibitor therapy for colorectal cancer[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(6): 296-301. doi: 10.12354/j.issn.1000-8179.2023.20221111

结直肠癌免疫检查点抑制剂治疗相关预测性标志物的研究进展

doi: 10.12354/j.issn.1000-8179.2023.20221111
基金项目: 本文受国家自然科学基金项目(编号:81972240、82272841)资助
详细信息
    作者简介:

    杨长江:专业方向为结直肠癌侵袭转移机制

    通讯作者:

    申占龙 shenzhanlong@pkuph.edu.cn

Research progress of predictive markers related to immune checkpoint inhibitor therapy for colorectal cancer

Funds: This work was supported by the National Natural Science Foundation of China (No. 81972240, No.82272841)
More Information
  • 摘要: 以免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)为代表的免疫疗法开辟了肿瘤治疗的新纪元。目前ICIs已经广泛应用于晚期转移性结直肠癌患者的治疗。预测性标志物是精确筛选可从ICIs治疗中受益的患者群体的重要工具。本文回顾并总结了目前ICIs治疗结直肠癌重要的预测性标志物及其研究现状,包括错配修复缺陷及微卫星不稳定性、肿瘤突变负荷、DNA聚合酶ε/DNA聚合酶δ1以及PD-L1表达等。通过了解这些标志物对于结直肠癌ICIs治疗的响应及患者预后的预测价值,有助于指导临床医生筛选潜在获益人群,提高治疗效率,实现精准化治疗。

     

  • 表  1  结直肠癌ICIs治疗相关预测性标志物

    标志物名称               概述
    dMMR/MSI-H结直肠癌ICIs治疗的主要预测性分子标志物
    TMB具有较高的应用价值,需要确定合理的截断值来定义不同肿瘤突变负荷的患者
    PD-L1表达受限于PD-L1的检测,需要更多的研究确定检测结直肠癌PD-L1表达的统一标准
    DNA聚合酶ε或聚合酶δ1突变仍需更多试验证据支持POLE / POLD1突变作为结直肠癌ICIs治疗的分子标志物
    免疫细胞相关标志物包括免疫评分、中性粒细胞-淋巴细胞比率等,仍需进一步的临床实验探索其应用价值
    下载: 导出CSV
  • [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660
    [2] Weng J, Li S, Zhu Z, et al. Exploring immunotherapy in colorectal cancer[J]. J Hematol Oncol, 2022, 15(1):95. doi: 10.1186/s13045-022-01294-4
    [3] Zhao W, Jin L, Chen P, et al. Colorectal cancer immunotherapy-recent progress and future directions[J]. Cancer Lett, 2022, 545:215816. doi: 10.1016/j.canlet.2022.215816
    [4] Casak SJ, Marcus L, Fashoyin-Aje L, et al. FDA approval summary: pembrolizumab for the first-line treatment of patients with MSI-H/dMMR advanced unresectable or metastatic colorectal carcinoma[J]. Clin Cancer Res, 2021, 27(17):4680-4684. doi: 10.1158/1078-0432.CCR-21-0557
    [5] Marcus L, Lemery SJ, Keegan P, et al. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors[J]. Clin Cancer Res, 2019, 25(13):3753-3758. doi: 10.1158/1078-0432.CCR-18-4070
    [6] Huyghe N, Benidovskaya E, Stevens P, et al. Biomarkers of response and resistance to immunotherapy in microsatellite stable colorectal cancer: toward a new personalized medicine[J]. Cancers (Basel), 2022, 14(9):2241. doi: 10.3390/cancers14092241
    [7] Yamamoto H, Imai K. Microsatellite instability: an update[J]. Arch Toxicol, 2015, 89(6):899-921. doi: 10.1007/s00204-015-1474-0
    [8] Koopman M, Kortman GA, Mekenkamp L, et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer[J]. Br J Cancer, 2009, 100(2):266-273. doi: 10.1038/sj.bjc.6604867
    [9] Maby P, Tougeron D, Hamieh M, et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy[J]. Cancer Res, 2015, 75(17):3446-3455. doi: 10.1158/0008-5472.CAN-14-3051
    [10] Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints[J]. Cancer Discov, 2015, 5(1):43-51. doi: 10.1158/2159-8290.CD-14-0863
    [11] Richman S. Deficient mismatch repair: read all about it (Review)[J]. Int J Oncol, 2015, 47(4):1189-1202. doi: 10.3892/ijo.2015.3119
    [12] Le DT, Uram JN, Wang H, et al. PD-1 Blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372(26):2509-2520. doi: 10.1056/NEJMoa1500596
    [13] Du F, Liu Y. Predictive molecular markers for the treatment with immune checkpoint inhibitors in colorectal cancer[J]. J Clin Lab Anal, 2022, 36(1):e24141.
    [14] Cercek A, Lumish M, Sinopoli J, et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer[J]. N Engl J Med, 2022, 386(25):2363-2376. doi: 10.1056/NEJMoa2201445
    [15] No authors listed. Mutation burden predicts anti-PD-1 response[J]. Cancer Discov, 2018, 8(3):258.
    [16] McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade[J]. Science, 2016, 351(6280):1463-1469. doi: 10.1126/science.aaf1490
    [17] Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma[J]. N Engl J Med, 2014, 371(23):2189-2199. doi: 10.1056/NEJMoa1406498
    [18] Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types[J]. Nat Genet, 2019, 51(2):202-206. doi: 10.1038/s41588-018-0312-8
    [19] Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study[J]. Lancet Oncol, 2020, 21 (10):1353-1365.
    [20] Friedman CF, Hainsworth JD, Kurzrock R, et al. Atezolizumab treatment of tumors with high tumor mutational burden from mypathway, a multicenter, open-label, phase IIa multiple basket study[J]. Cancer Discov, 2022, 12(3):654-669. doi: 10.1158/2159-8290.CD-21-0450
    [21] Schrock AB, Ouyang C, Sandhu J, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer[J]. Ann Oncol, 2019, 30(7):1096-1103. doi: 10.1093/annonc/mdz134
    [22] Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18):2053-2061. doi: 10.1200/JCO.19.03296
    [23] Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the canadian cancer trials group CO. 26 study[J]. JAMA Oncol, 2020, 6(6):831-838. doi: 10.1001/jamaoncol.2020.0910
    [24] Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy[J]. Cancer Discov, 2018, 8(9):1069-1086. doi: 10.1158/2159-8290.CD-18-0367
    [25] Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26):2443-2454. doi: 10.1056/NEJMoa1200690
    [26] Garon EB, Hellmann MD, Rizvi NA, et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phaseⅠ KEYNOTE-001 study[J]. J Clin Oncol, 2019, 37 (28):2518-2527.
    [27] Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial[J]. Lancet, 2019, 393 (10183):1819-1830.
    [28] Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016, 375(19):1823-1833. doi: 10.1056/NEJMoa1606774
    [29] Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18 (9):182-1191.
    [30] Wang X, Teng F, Kong L, et al. PD-L1 expression in human cancers and its association with clinical outcomes[J]. Onco Targets Ther, 2016, 9:5023-5039. doi: 10.2147/OTT.S105862
    [31] Briggs S, Tomlinson I. Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers[J]. J Pathol, 2013, 230(2):148-153. doi: 10.1002/path.4185
    [32] Domingo E, Freeman-Mills L, Rayner E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study[J]. Lancet Gastroenterol Hepatol, 2016, 1 (3):207-216.
    [33] Wang F, Zhao Q, Wang YN, et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types[J]. JAMA Oncol, 2019, 5(10):1504-1506. doi: 10.1001/jamaoncol.2019.2963
    [34] Gong J, Wang C, Lee PP, et al. Response to PD-1 blockade in microsatellite stable metastatic colorectal cancer harboring a pole mutation[J]. J Natl Compr Canc Netw, 2017, 15(2):142-147. doi: 10.6004/jnccn.2017.0016
    [35] Rozek LS, Schmit SL, Greenson JK, et al. Tumor-infiltrating lymphocytes, Crohn's-like lymphoid reaction, and survival from colorectal cancer[J]. J Natl Cancer Inst, 2016, 108(8):djw027.
    [36] Loupakis F, Depetris I, Biason P, et al. Prediction of benefit from checkpoint inhibitors in mismatch repair deficient metastatic colorectal cancer: role of tumor infiltrating lymphocytes[J]. Oncologist, 2020, 25(6):481-487. doi: 10.1634/theoncologist.2019-0611
    [37] Galon J, Angell HK, Bedognetti D, et al. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures[J]. Immunity, 2013, 39(1):11-26. doi: 10.1016/j.immuni.2013.07.008
    [38] Mlecnik B, Bindea G, Angell HK, et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability[J]. Immunity, 2016, 44(3):698-711. doi: 10.1016/j.immuni.2016.02.025
    [39] Yomoda T, Sudo T, Kawahara A, et al. The Immunoscore is a superior prognostic tool in stages Ⅱ and III colorectal cancer and is significantly correlated with programmed death-ligand 1 (PD-L1) expression on tumor-infiltrating mononuclear cells[J]. Ann Surg Oncol, 2019, 26 (2):415-424.
    [40] Moschetta M, Uccello M, Kasenda B, et al. Dynamics of neutrophils-to-lymphocyte ratio predict outcomes of PD-1/PD-L1 blockade[J]. Biomed Res Int, 2017, 2017:1506824.
    [41] Chen S, Li R, Zhang Z, et al. Prognostic value of baseline and change in neutrophil-to-lymphocyte ratio for survival in advanced non-small cell lung cancer patients with poor performance status receiving PD-1 inhibitors[J]. Transl Lung Cancer Res, 2021, 10(3):1397-1407.
    [42] Diem S, Schmid S, Krapf M, et al. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab[J]. Lung Cancer, 2017, 111:176-181. doi: 10.1016/j.lungcan.2017.07.024
    [43] Ueda T, Chikuie N, Takumida M, et al. Baseline neutrophil-to-lymphocyte ratio (NLR) is associated with clinical outcome in recurrent or metastatic head and neck cancer patients treated with nivolumab[J]. Acta Otolaryngol, 2020, 140(2):181-187. doi: 10.1080/00016489.2019.1699250
    [44] Fan X, Wang D, Zhang W, et al. Inflammatory markers predict survival in patients with advanced gastric and colorectal cancers receiving anti-PD-1 therapy[J]. Front Cell Dev Biol, 2021, 9:638312. doi: 10.3389/fcell.2021.638312
    [45] 杨长江,赵龙,林易霖,等.结直肠癌免疫检查点抑制剂联合治疗策略的研究进展[J].中华普通外科杂志,2022,37(7):554-557.
  • 加载中
表(1)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  33
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-29
  • 录用日期:  2022-09-16
  • 修回日期:  2022-09-12

目录

    /

    返回文章
    返回